gary / predict.py
Scatxyu's picture
Upload 2 files
2ba7d38 verified
raw
history blame
9.64 kB
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
from cog import BasePredictor, Input, Path
import os
import time
import torch
import shutil
import subprocess
import numpy as np
from typing import List
from diffusers.utils import load_image
from transformers import CLIPImageProcessor
from diffusers import (
StableDiffusionXLPipeline,
StableDiffusionXLImg2ImgPipeline,
StableDiffusionXLInpaintPipeline,
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
PNDMScheduler,
KDPM2AncestralDiscreteScheduler,
AutoencoderKL
)
from diffusers.pipelines.stable_diffusion.safety_checker import (
StableDiffusionSafetyChecker,
)
MODEL_NAME = "dataautogpt3/ProteusV0.4-Lightning"
MODEL_CACHE = "checkpoints"
SAFETY_CACHE = "safety-cache"
FEATURE_EXTRACTOR = "feature-extractor"
SAFETY_URL = "https://weights.replicate.delivery/default/sdxl/safety-1.0.tar"
MODEL_URL = "https://weights.replicate.delivery/default/dataautogpt3/proteusv0.4-lightning.tar"
class KarrasDPM:
def from_config(config):
return DPMSolverMultistepScheduler.from_config(config, use_karras_sigmas=True)
SCHEDULERS = {
"DDIM": DDIMScheduler,
"DPMSolverMultistep": DPMSolverMultistepScheduler,
"HeunDiscrete": HeunDiscreteScheduler,
"KarrasDPM": KarrasDPM,
"K_EULER_ANCESTRAL": EulerAncestralDiscreteScheduler,
"K_EULER": EulerDiscreteScheduler,
"PNDM": PNDMScheduler,
"DPM++2MSDE": KDPM2AncestralDiscreteScheduler,
}
def download_weights(url, dest):
start = time.time()
print("downloading url: ", url)
print("downloading to: ", dest)
subprocess.check_call(["pget", "-x", url, dest], close_fds=False)
print("downloading took: ", time.time() - start)
class Predictor(BasePredictor):
def setup(self) -> None:
"""Load the model into memory to make running multiple predictions efficient"""
start = time.time()
print("Loading safety checker...")
if not os.path.exists(SAFETY_CACHE):
download_weights(SAFETY_URL, SAFETY_CACHE)
print("Loading model")
if not os.path.exists(MODEL_CACHE):
download_weights(MODEL_URL, MODEL_CACHE)
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(
SAFETY_CACHE, torch_dtype=torch.float16
).to("cuda")
self.feature_extractor = CLIPImageProcessor.from_pretrained(FEATURE_EXTRACTOR)
print("Loading vae")
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix",
torch_dtype=torch.float16
)
print("Loading txt2img pipeline...")
self.txt2img_pipe = StableDiffusionXLPipeline.from_pretrained(
MODEL_NAME,
vae=vae,
torch_dtype=torch.float16,
cache_dir=MODEL_CACHE,
).to('cuda')
print("Loading SDXL img2img pipeline...")
self.img2img_pipe = StableDiffusionXLImg2ImgPipeline(
vae=self.txt2img_pipe.vae,
text_encoder=self.txt2img_pipe.text_encoder,
text_encoder_2=self.txt2img_pipe.text_encoder_2,
tokenizer=self.txt2img_pipe.tokenizer,
tokenizer_2=self.txt2img_pipe.tokenizer_2,
unet=self.txt2img_pipe.unet,
scheduler=self.txt2img_pipe.scheduler,
).to("cuda")
print("Loading SDXL inpaint pipeline...")
self.inpaint_pipe = StableDiffusionXLInpaintPipeline(
vae=self.txt2img_pipe.vae,
text_encoder=self.txt2img_pipe.text_encoder,
text_encoder_2=self.txt2img_pipe.text_encoder_2,
tokenizer=self.txt2img_pipe.tokenizer,
tokenizer_2=self.txt2img_pipe.tokenizer_2,
unet=self.txt2img_pipe.unet,
scheduler=self.txt2img_pipe.scheduler,
).to("cuda")
print("setup took: ", time.time() - start)
def load_image(self, path):
shutil.copyfile(path, "/tmp/image.png")
return load_image("/tmp/image.png").convert("RGB")
def run_safety_checker(self, image):
safety_checker_input = self.feature_extractor(image, return_tensors="pt").to(
"cuda"
)
np_image = [np.array(val) for val in image]
image, has_nsfw_concept = self.safety_checker(
images=np_image,
clip_input=safety_checker_input.pixel_values.to(torch.float16),
)
return image, has_nsfw_concept
@torch.inference_mode()
def predict(
self,
prompt: str = Input(
description="Input prompt",
default="3 fish in a fish tank wearing adorable outfits, best quality, hd"
),
negative_prompt: str = Input(
description="Negative Input prompt",
default="nsfw, bad quality, bad anatomy, worst quality, low quality, low resolutions, extra fingers, blur, blurry, ugly, wrongs proportions, watermark, image artifacts, lowres, ugly, jpeg artifacts, deformed, noisy image"
),
image: Path = Input(
description="Input image for img2img or inpaint mode",
default=None,
),
mask: Path = Input(
description="Input mask for inpaint mode. Black areas will be preserved, white areas will be inpainted.",
default=None,
),
width: int = Input(
description="Width of output image. Recommended 1024 or 1280",
default=1024
),
height: int = Input(
description="Height of output image. Recommended 1024 or 1280",
default=1024
),
num_outputs: int = Input(
description="Number of images to output.",
ge=1,
le=4,
default=1,
),
scheduler: str = Input(
description="scheduler",
choices=SCHEDULERS.keys(),
default="K_EULER_ANCESTRAL",
),
num_inference_steps: int = Input(
description="Number of denoising steps", ge=1, le=100, default=8
),
guidance_scale: float = Input(
description="Scale for classifier-free guidance", ge=0, le=10, default=2
),
prompt_strength: float = Input(
description="Prompt strength when using img2img / inpaint. 1.0 corresponds to full destruction of information in image",
ge=0.0,
le=1.0,
default=0.8,
),
seed: int = Input(
description="Random seed. Leave blank to randomize the seed", default=None
),
apply_watermark: bool = Input(
description="Applies a watermark to enable determining if an image is generated in downstream applications. If you have other provisions for generating or deploying images safely, you can use this to disable watermarking.",
default=True,
),
disable_safety_checker: bool = Input(
description="Disable safety checker for generated images. This feature is only available through the API. See https://replicate.com/docs/how-does-replicate-work#safety",
default=False
)
) -> List[Path]:
"""Run a single prediction on the model"""
if seed is None:
seed = int.from_bytes(os.urandom(4), "big")
print(f"Using seed: {seed}")
generator = torch.Generator("cuda").manual_seed(seed)
sdxl_kwargs = {}
print(f"Prompt: {prompt}")
if image and mask:
print("inpainting mode")
sdxl_kwargs["image"] = self.load_image(image)
sdxl_kwargs["mask_image"] = self.load_image(mask)
sdxl_kwargs["strength"] = prompt_strength
sdxl_kwargs["width"] = width
sdxl_kwargs["height"] = height
pipe = self.inpaint_pipe
elif image:
print("img2img mode")
sdxl_kwargs["image"] = self.load_image(image)
sdxl_kwargs["strength"] = prompt_strength
pipe = self.img2img_pipe
else:
print("txt2img mode")
sdxl_kwargs["width"] = width
sdxl_kwargs["height"] = height
pipe = self.txt2img_pipe
# toggles watermark for this prediction
if not apply_watermark:
watermark_cache = pipe.watermark
pipe.watermark = None
pipe.scheduler = SCHEDULERS[scheduler].from_config(pipe.scheduler.config)
common_args = {
"prompt": [prompt] * num_outputs,
"negative_prompt": [negative_prompt] * num_outputs,
"guidance_scale": guidance_scale,
"generator": generator,
"num_inference_steps": num_inference_steps,
}
output = pipe(**common_args, **sdxl_kwargs)
if not apply_watermark:
pipe.watermark = watermark_cache
if not disable_safety_checker:
_, has_nsfw_content = self.run_safety_checker(output.images)
output_paths = []
for i, image in enumerate(output.images):
if not disable_safety_checker:
if has_nsfw_content[i]:
print(f"NSFW content detected in image {i}")
continue
output_path = f"/tmp/out-{i}.png"
image.save(output_path)
output_paths.append(Path(output_path))
if len(output_paths) == 0:
raise Exception(
f"NSFW content detected. Try running it again, or try a different prompt."
)
return output_paths