check?
Browse files
app.py
CHANGED
@@ -2,80 +2,69 @@ import streamlit as st
|
|
2 |
import os
|
3 |
from langchain_community.vectorstores import Chroma
|
4 |
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
5 |
-
from
|
6 |
-
from langchain
|
7 |
-
from
|
8 |
-
from
|
9 |
-
from langchain.
|
|
|
|
|
10 |
from langchain_community.chat_message_histories import StreamlitChatMessageHistory
|
|
|
|
|
|
|
|
|
|
|
11 |
import time
|
12 |
|
13 |
# Load the embedding function
|
14 |
model_name = "BAAI/bge-base-en"
|
15 |
-
encode_kwargs
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
# Load the LLM
|
19 |
-
llm = Together(model="mistralai/Mixtral-8x22B-Instruct-v0.1", temperature=0.2, max_tokens=19096, top_k=10, together_api_key=os.environ['pilotikval'])
|
20 |
|
|
|
|
|
|
|
|
|
21 |
msgs = StreamlitChatMessageHistory(key="langchain_messages")
|
22 |
memory = ConversationBufferMemory(chat_memory=msgs)
|
23 |
|
|
|
|
|
24 |
DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}")
|
25 |
|
26 |
-
def _combine_documents(
|
|
|
|
|
27 |
doc_strings = [format_document(doc, document_prompt) for doc in docs]
|
28 |
return document_separator.join(doc_strings)
|
29 |
|
|
|
|
|
30 |
chistory = []
|
31 |
|
32 |
-
|
33 |
chistory.append({"role": role, "content": content})
|
34 |
|
35 |
-
def render_message_with_copy_button(role: str, content: str, key: str):
|
36 |
-
html_code = f"""
|
37 |
-
<div class="message" style="position: relative; padding-right: 40px;">
|
38 |
-
<div class="message-content">{content}</div>
|
39 |
-
<button onclick="copyToClipboard('{key}')" style="position: absolute; right: 0; top: 0; background-color: transparent; border: none; cursor: pointer;">
|
40 |
-
<img src="https://img.icons8.com/material-outlined/24/grey/copy.png" alt="Copy">
|
41 |
-
</button>
|
42 |
-
</div>
|
43 |
-
<textarea id="{key}" style="display:none;">{content}</textarea>
|
44 |
-
<script>
|
45 |
-
function copyToClipboard(key) {{
|
46 |
-
var copyText = document.getElementById(key);
|
47 |
-
copyText.style.display = "block";
|
48 |
-
copyText.select();
|
49 |
-
document.execCommand("copy");
|
50 |
-
copyText.style.display = "none";
|
51 |
-
alert("Copied to clipboard");
|
52 |
-
}}
|
53 |
-
</script>
|
54 |
-
"""
|
55 |
-
st.write(html_code, unsafe_allow_html=True)
|
56 |
-
|
57 |
-
def get_streaming_response(user_query, chat_history):
|
58 |
-
template = """
|
59 |
-
You are a knowledgeable assistant. Provide a detailed and thorough answer to the question based on the following context:
|
60 |
|
61 |
-
|
|
|
62 |
|
63 |
-
User question: {user_question}
|
64 |
-
"""
|
65 |
-
prompt = ChatPromptTemplate.from_template(template)
|
66 |
-
|
67 |
-
inputs = {
|
68 |
-
"chat_history": chat_history,
|
69 |
-
"user_question": user_query
|
70 |
-
}
|
71 |
|
72 |
-
chain = prompt | llm
|
73 |
-
return chain.stream(inputs)
|
74 |
|
75 |
-
def app():
|
76 |
with st.sidebar:
|
|
|
77 |
st.title("dochatter")
|
78 |
-
|
|
|
|
|
|
|
79 |
if option == 'RespiratoryFishman':
|
80 |
persist_directory = "./respfishmandbcud/"
|
81 |
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="fishmannotescud")
|
@@ -83,47 +72,176 @@ def app():
|
|
83 |
elif option == 'RespiratoryMurray':
|
84 |
persist_directory = "./respmurray/"
|
85 |
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="respmurraynotes")
|
|
|
|
|
86 |
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
|
87 |
elif option == 'MedMRCP2':
|
88 |
persist_directory = "./medmrcp2store/"
|
89 |
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="medmrcp2notes")
|
|
|
|
|
90 |
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
|
91 |
elif option == 'General Medicine':
|
92 |
persist_directory = "./oxfordmedbookdir/"
|
93 |
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="oxfordmed")
|
|
|
|
|
94 |
retriever = vectordb.as_retriever(search_kwargs={"k": 7})
|
|
|
|
|
95 |
else:
|
96 |
persist_directory = "./mrcpchromadb/"
|
97 |
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="mrcppassmednotes")
|
98 |
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
if "messages" not in st.session_state.keys():
|
101 |
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]
|
102 |
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
with st.chat_message(message["role"]):
|
106 |
-
|
107 |
store_chat_history(message["role"], message["content"])
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
with st.chat_message("user"):
|
113 |
-
st.write(
|
|
|
|
|
114 |
|
|
|
115 |
with st.chat_message("assistant"):
|
116 |
with st.spinner("Thinking..."):
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
if __name__ == '__main__':
|
129 |
-
app()
|
|
|
2 |
import os
|
3 |
from langchain_community.vectorstores import Chroma
|
4 |
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
5 |
+
from langchain_community.llms import Together
|
6 |
+
from langchain import hub
|
7 |
+
from operator import itemgetter
|
8 |
+
from langchain.schema.runnable import RunnableParallel
|
9 |
+
from langchain.chains import LLMChain
|
10 |
+
from langchain.chains import RetrievalQA
|
11 |
+
from langchain.schema.output_parser import StrOutputParser
|
12 |
from langchain_community.chat_message_histories import StreamlitChatMessageHistory
|
13 |
+
from langchain.memory import ConversationBufferMemory
|
14 |
+
from langchain.chains import ConversationalRetrievalChain
|
15 |
+
from langchain.memory import ConversationSummaryMemory
|
16 |
+
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder, PromptTemplate
|
17 |
+
from langchain.schema.runnable import RunnableLambda, RunnablePassthrough
|
18 |
import time
|
19 |
|
20 |
# Load the embedding function
|
21 |
model_name = "BAAI/bge-base-en"
|
22 |
+
encode_kwargs=encode_kwargs
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
|
|
|
|
|
30 |
|
31 |
+
|
32 |
+
# Load the LLM
|
33 |
+
llm = Together(
|
34 |
+
model="mistralai/Mixtral-8x22B-Instruct-v0.1",
|
35 |
msgs = StreamlitChatMessageHistory(key="langchain_messages")
|
36 |
memory = ConversationBufferMemory(chat_memory=msgs)
|
37 |
|
38 |
+
|
39 |
+
|
40 |
DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}")
|
41 |
|
42 |
+
def _combine_documents(
|
43 |
+
docs, document_prompt=DEFAULT_DOCUMENT_PROMPT, document_separator="\n\n"
|
44 |
+
):
|
45 |
doc_strings = [format_document(doc, document_prompt) for doc in docs]
|
46 |
return document_separator.join(doc_strings)
|
47 |
|
48 |
+
|
49 |
+
|
50 |
chistory = []
|
51 |
|
52 |
+
# Append the new message to the chat history
|
53 |
chistory.append({"role": role, "content": content})
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
# Define the Streamlit app
|
57 |
+
def app():
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
|
|
|
|
60 |
|
|
|
61 |
with st.sidebar:
|
62 |
+
|
63 |
st.title("dochatter")
|
64 |
+
# Create a dropdown selection box
|
65 |
+
option = st.selectbox(
|
66 |
+
)
|
67 |
+
# Depending on the selected option, choose the appropriate retriever
|
68 |
if option == 'RespiratoryFishman':
|
69 |
persist_directory = "./respfishmandbcud/"
|
70 |
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="fishmannotescud")
|
|
|
72 |
elif option == 'RespiratoryMurray':
|
73 |
persist_directory = "./respmurray/"
|
74 |
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="respmurraynotes")
|
75 |
+
|
76 |
+
|
77 |
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
|
78 |
elif option == 'MedMRCP2':
|
79 |
persist_directory = "./medmrcp2store/"
|
80 |
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="medmrcp2notes")
|
81 |
+
|
82 |
+
|
83 |
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
|
84 |
elif option == 'General Medicine':
|
85 |
persist_directory = "./oxfordmedbookdir/"
|
86 |
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="oxfordmed")
|
87 |
+
|
88 |
+
|
89 |
retriever = vectordb.as_retriever(search_kwargs={"k": 7})
|
90 |
+
|
91 |
+
|
92 |
else:
|
93 |
persist_directory = "./mrcpchromadb/"
|
94 |
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="mrcppassmednotes")
|
95 |
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
|
96 |
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
|
111 |
+
# Session State
|
112 |
+
|
113 |
if "messages" not in st.session_state.keys():
|
114 |
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]
|
115 |
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
_template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question which contains the themes of the conversation. Do not write the question. Do not write the answer.
|
128 |
+
|
129 |
+
Chat History:
|
130 |
+
{chat_history}
|
131 |
+
Follow Up Input: {question}
|
132 |
+
|
133 |
+
template = """You are helping a doctor. Answer with what you know from the context provided. Please be as detailed and thorough. Answer the question based on the following context:
|
134 |
+
{context}
|
135 |
+
|
136 |
+
Question: {question}
|
137 |
+
"""
|
138 |
+
ANSWER_PROMPT = ChatPromptTemplate.from_template(template)
|
139 |
+
|
140 |
+
|
141 |
+
_inputs = RunnableParallel(
|
142 |
+
standalone_question=RunnablePassthrough.assign(
|
143 |
+
chat_history=lambda x: chistory
|
144 |
+
) | CONDENSE_QUESTION_PROMPT | llmc | StrOutputParser(),
|
145 |
+
|
146 |
+
|
147 |
+
|
148 |
+
)
|
149 |
+
_context = {
|
150 |
+
"context": itemgetter("standalone_question") | retriever | _combine_documents,
|
151 |
+
}
|
152 |
+
conversational_qa_chain = _inputs | _context | ANSWER_PROMPT | llm
|
153 |
+
|
154 |
+
st.header("Hello Doctor!")
|
155 |
+
|
156 |
+
|
157 |
+
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
|
162 |
+
|
163 |
+
|
164 |
+
|
165 |
+
|
166 |
+
for message in st.session_state.messages:
|
167 |
with st.chat_message(message["role"]):
|
168 |
+
st.write(message["content"])
|
169 |
store_chat_history(message["role"], message["content"])
|
170 |
|
171 |
+
|
172 |
+
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
+
prompts2 = st.chat_input("Say something")
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
|
181 |
+
|
182 |
+
|
183 |
+
|
184 |
+
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
|
189 |
+
|
190 |
+
|
191 |
+
|
192 |
+
|
193 |
+
if prompts2:
|
194 |
+
st.session_state.messages.append({"role": "user", "content": prompts2})
|
195 |
with st.chat_message("user"):
|
196 |
+
st.write(prompts2)
|
197 |
+
|
198 |
+
|
199 |
|
200 |
+
if st.session_state.messages[-1]["role"] != "assistant":
|
201 |
with st.chat_message("assistant"):
|
202 |
with st.spinner("Thinking..."):
|
203 |
+
for _ in range(3): # Retry up to 3 times
|
204 |
+
try:
|
205 |
+
response = conversational_qa_chain.invoke(
|
206 |
+
{
|
207 |
+
"question": prompts2,
|
208 |
+
"chat_history": chistory,
|
209 |
+
}
|
210 |
+
)
|
211 |
+
st.write(response)
|
212 |
+
message = {"role": "assistant", "content": response}
|
213 |
+
st.session_state.messages.append(message)
|
214 |
+
break
|
215 |
+
except Exception as e:
|
216 |
+
st.error(f"An error occurred: {e}")
|
217 |
+
time.sleep(2) # Wait 2 seconds before retrying
|
218 |
+
|
219 |
+
|
220 |
+
|
221 |
+
|
222 |
+
|
223 |
+
|
224 |
+
|
225 |
+
|
226 |
+
|
227 |
+
|
228 |
+
|
229 |
+
|
230 |
+
|
231 |
+
|
232 |
+
|
233 |
+
|
234 |
+
|
235 |
+
|
236 |
+
|
237 |
+
|
238 |
+
|
239 |
+
|
240 |
+
|
241 |
+
|
242 |
+
|
243 |
+
|
244 |
+
|
245 |
|
246 |
if __name__ == '__main__':
|
247 |
+
app()
|