medchat2 / app.py
Sbnos's picture
last working update
fe9f836 verified
raw
history blame
6.76 kB
import streamlit as st
import os
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from langchain_community.llms import Together
from langchain import hub
from operator import itemgetter
from langchain.schema.runnable import RunnableParallel
from langchain.schema import format_document
from typing import List, Tuple
from langchain.chains import LLMChain
from langchain.chains import RetrievalQA
from langchain.schema.output_parser import StrOutputParser
from langchain_community.chat_message_histories import StreamlitChatMessageHistory
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationSummaryMemory
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder, PromptTemplate
from langchain.schema.runnable import RunnableLambda, RunnablePassthrough
import time
# Load the embedding function
model_name = "BAAI/bge-base-en"
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
embedding_function = HuggingFaceBgeEmbeddings(
model_name=model_name,
encode_kwargs=encode_kwargs
)
# Load the LLM
llm = Together(
model="mistralai/Mixtral-8x22B-Instruct-v0.1",
temperature=0.2,
max_tokens=19096,
top_k=10,
together_api_key=os.environ['pilotikval']
)
# Load the summarizeLLM
llmc = Together(
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
temperature=0.2,
max_tokens=1024,
top_k=1,
together_api_key=os.environ['pilotikval']
)
msgs = StreamlitChatMessageHistory(key="langchain_messages")
memory = ConversationBufferMemory(chat_memory=msgs)
DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}")
def _combine_documents(
docs, document_prompt=DEFAULT_DOCUMENT_PROMPT, document_separator="\n\n"
):
doc_strings = [format_document(doc, document_prompt) for doc in docs]
return document_separator.join(doc_strings)
chistory = []
def store_chat_history(role: str, content: str):
# Append the new message to the chat history
chistory.append({"role": role, "content": content})
# Define the Streamlit app
def app():
with st.sidebar:
st.title("dochatter")
# Create a dropdown selection box
option = st.selectbox(
'Which retriever would you like to use?',
('General Medicine', 'RespiratoryFishman', 'RespiratoryMurray', 'MedMRCP2', 'OldMedicine')
)
# Depending on the selected option, choose the appropriate retriever
if option == 'RespiratoryFishman':
persist_directory = "./respfishmandbcud/"
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="fishmannotescud")
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
elif option == 'RespiratoryMurray':
persist_directory = "./respmurray/"
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="respmurraynotes")
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
elif option == 'MedMRCP2':
persist_directory = "./medmrcp2store/"
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="medmrcp2notes")
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
elif option == 'General Medicine':
persist_directory = "./oxfordmedbookdir/"
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="oxfordmed")
retriever = vectordb.as_retriever(search_kwargs={"k": 7})
else:
persist_directory = "./mrcpchromadb/"
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_function, collection_name="mrcppassmednotes")
retriever = vectordb.as_retriever(search_kwargs={"k": 5})
# Session State
if "messages" not in st.session_state.keys():
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]
_template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question which contains the themes of the conversation. Do not write the question. Do not write the answer.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:"""
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
template = """You are helping a doctor. Answer with what you know from the context provided. Please be as detailed and thorough. Answer the question based on the following context:
{context}
Question: {question}
"""
ANSWER_PROMPT = ChatPromptTemplate.from_template(template)
_inputs = RunnableParallel(
standalone_question=RunnablePassthrough.assign(
chat_history=lambda x: chistory
) | CONDENSE_QUESTION_PROMPT | llmc | StrOutputParser(),
)
_context = {
"context": itemgetter("standalone_question") | retriever | _combine_documents,
"question": lambda x: x["standalone_question"],
}
conversational_qa_chain = _inputs | _context | ANSWER_PROMPT | llm
st.header("Ask Away!")
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
store_chat_history(message["role"], message["content"])
prompts2 = st.chat_input("Say something")
if prompts2:
st.session_state.messages.append({"role": "user", "content": prompts2})
with st.chat_message("user"):
st.write(prompts2)
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
for _ in range(3): # Retry up to 3 times
try:
response = conversational_qa_chain.invoke(
{
"question": prompts2,
"chat_history": chistory,
}
)
st.write(response)
message = {"role": "assistant", "content": response}
st.session_state.messages.append(message)
break
except Exception as e:
st.error(f"An error occurred: {e}")
time.sleep(2) # Wait 2 seconds before retrying
if __name__ == '__main__':
app()