Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,225 +1,298 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import os
|
|
|
|
| 3 |
import sqlite3
|
| 4 |
from datetime import datetime
|
| 5 |
-
import
|
| 6 |
-
|
| 7 |
-
import
|
|
|
|
|
|
|
| 8 |
import numpy as np
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
| 10 |
import pytesseract
|
| 11 |
-
from PIL import Image
|
| 12 |
import sympy as sp
|
| 13 |
-
import io
|
| 14 |
|
| 15 |
-
#
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
self.corpus_chunks.extend(chunks)
|
| 69 |
-
|
| 70 |
-
if self.corpus_chunks and self.embedding_model:
|
| 71 |
-
try:
|
| 72 |
-
embs = self.embedding_model.encode(self.corpus_chunks).astype("float32")
|
| 73 |
-
dim = embs.shape[1]
|
| 74 |
-
self.index = faiss.IndexFlatL2(dim)
|
| 75 |
-
self.index.add(embs)
|
| 76 |
-
except Exception as e:
|
| 77 |
-
st.error(f"FAISS error: {e}")
|
| 78 |
-
|
| 79 |
-
def _split_text(self, text, chunk_size=400):
|
| 80 |
-
if not text:
|
| 81 |
-
return []
|
| 82 |
-
return [text[i:i+chunk_size] for i in range(0, len(text), chunk_size) if text[i:i+chunk_size].strip()]
|
| 83 |
-
|
| 84 |
-
def answer_question(self, question):
|
| 85 |
-
if not question.strip():
|
| 86 |
-
return "অনুগ্ৰহ কৰি এটা প্ৰশ্ন সোধক।"
|
| 87 |
-
|
| 88 |
-
if self._is_math_question(question):
|
| 89 |
-
return self._solve_math(question)
|
| 90 |
-
|
| 91 |
-
context = ""
|
| 92 |
-
if self.index and self.corpus_chunks:
|
| 93 |
-
relevant_chunks = self._find_relevant_chunks(question)
|
| 94 |
-
if relevant_chunks:
|
| 95 |
-
context = "\n".join(relevant_chunks[:2])
|
| 96 |
-
|
| 97 |
-
if self.llm:
|
| 98 |
-
try:
|
| 99 |
-
prompt = f"প্ৰশ্ন: {question}\n\nসংদৰ্ভ: {context}\n\nসহায়ক উত্তৰ:" if context else f"প্ৰশ্ন: {question}\n\nউত্তৰ:"
|
| 100 |
-
response = self.llm(prompt, max_new_tokens=150, temperature=0.3)
|
| 101 |
-
return response[0]['generated_text']
|
| 102 |
-
except Exception as e:
|
| 103 |
-
return f"উত্তৰ তৈয়াৰ কৰোঁতে সমস্যা: {e}"
|
| 104 |
-
else:
|
| 105 |
-
return "মই আপোনাৰ প্ৰশ্নটো বুজিলোঁ। অধ্যয়নৰ বাবে শুভেচ্ছা!"
|
| 106 |
-
|
| 107 |
-
def _is_math_question(self, text):
|
| 108 |
-
math_indicators = ['+', '-', '*', '/', '=', 'x', 'y', 'গণিত', 'সমীকৰণ']
|
| 109 |
-
return any(indicator in text.lower() for indicator in math_indicators)
|
| 110 |
-
|
| 111 |
-
def _solve_math(self, expr):
|
| 112 |
-
try:
|
| 113 |
-
expr = expr.strip().replace('^', '**')
|
| 114 |
-
if '=' in expr:
|
| 115 |
-
parts = expr.split('=')
|
| 116 |
-
if len(parts) == 2:
|
| 117 |
-
left = sp.sympify(parts[0].strip())
|
| 118 |
-
right = sp.sympify(parts[1].strip())
|
| 119 |
-
equation = sp.Eq(left, right)
|
| 120 |
-
solutions = sp.solve(equation)
|
| 121 |
-
if solutions:
|
| 122 |
-
return f"সমীকৰণ: {equation}\n\nসমাধান: {solutions}"
|
| 123 |
-
else:
|
| 124 |
-
expr_sym = sp.sympify(expr)
|
| 125 |
-
simplified = sp.simplify(expr_sym)
|
| 126 |
-
return f"প্ৰকাশ: {expr}\n\nসৰলীকৃত: {simplified}"
|
| 127 |
-
except Exception as e:
|
| 128 |
-
return f"গণিত সমাধানত সমস্যা: {e}"
|
| 129 |
-
|
| 130 |
-
def _find_relevant_chunks(self, question, k=3):
|
| 131 |
-
if not self.corpus_chunks:
|
| 132 |
-
return []
|
| 133 |
-
|
| 134 |
-
if self.index and self.embedding_model:
|
| 135 |
try:
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
return [self.corpus_chunks[i] for i in I[0] if 0 <= i < len(self.corpus_chunks)]
|
| 139 |
except Exception:
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
try:
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
except Exception as e:
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
if ocr_text:
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
|
| 224 |
if __name__ == "__main__":
|
| 225 |
-
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
"""
|
| 3 |
+
Jajabor – Minimal safe version (no FAISS, no torch, no transformers)
|
| 4 |
+
- Retrieval: TF-IDF (scikit-learn)
|
| 5 |
+
- PDF reading: PyPDF2
|
| 6 |
+
- OCR: pytesseract
|
| 7 |
+
- Math: sympy
|
| 8 |
+
- UI: Gradio
|
| 9 |
+
"""
|
| 10 |
+
|
| 11 |
import os
|
| 12 |
+
import io
|
| 13 |
import sqlite3
|
| 14 |
from datetime import datetime
|
| 15 |
+
import traceback
|
| 16 |
+
|
| 17 |
+
from PyPDF2 import PdfReader
|
| 18 |
+
from PIL import Image
|
| 19 |
+
import gradio as gr
|
| 20 |
import numpy as np
|
| 21 |
+
|
| 22 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 23 |
+
from sklearn.metrics.pairwise import linear_kernel
|
| 24 |
+
|
| 25 |
import pytesseract
|
|
|
|
| 26 |
import sympy as sp
|
|
|
|
| 27 |
|
| 28 |
+
# ---------- CONFIG ----------
|
| 29 |
+
APP_NAME = "Jajabor – Minimal (TF-IDF retrieval)"
|
| 30 |
+
BASE_DIR = os.path.abspath(os.path.dirname(__file__))
|
| 31 |
+
PDF_DIR = os.path.join(BASE_DIR, "pdfs", "class10")
|
| 32 |
+
DB_PATH = os.path.join(BASE_DIR, "jajabor_users.db")
|
| 33 |
+
|
| 34 |
+
CHUNK_SIZE = 600
|
| 35 |
+
CHUNK_OVERLAP = 120
|
| 36 |
+
TOP_K = 3
|
| 37 |
+
|
| 38 |
+
# ---------- DB ----------
|
| 39 |
+
def init_db(path=DB_PATH):
|
| 40 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
| 41 |
+
conn = sqlite3.connect(path)
|
| 42 |
+
cur = conn.cursor()
|
| 43 |
+
cur.execute("""CREATE TABLE IF NOT EXISTS users (id INTEGER PRIMARY KEY AUTOINCREMENT, username TEXT UNIQUE, created_at TEXT)""")
|
| 44 |
+
cur.execute("""CREATE TABLE IF NOT EXISTS interactions (id INTEGER PRIMARY KEY AUTOINCREMENT, user_id INTEGER, timestamp TEXT, query TEXT, answer TEXT, is_math INTEGER)""")
|
| 45 |
+
conn.commit()
|
| 46 |
+
conn.close()
|
| 47 |
+
|
| 48 |
+
def get_or_create_user(username):
|
| 49 |
+
username = username.strip()
|
| 50 |
+
if not username:
|
| 51 |
+
return None
|
| 52 |
+
conn = sqlite3.connect(DB_PATH)
|
| 53 |
+
cur = conn.cursor()
|
| 54 |
+
cur.execute("SELECT id FROM users WHERE username=?", (username,))
|
| 55 |
+
row = cur.fetchone()
|
| 56 |
+
if row:
|
| 57 |
+
uid = row[0]
|
| 58 |
+
else:
|
| 59 |
+
cur.execute("INSERT INTO users (username, created_at) VALUES (?, ?)", (username, datetime.utcnow().isoformat()))
|
| 60 |
+
conn.commit()
|
| 61 |
+
uid = cur.lastrowid
|
| 62 |
+
conn.close()
|
| 63 |
+
return uid
|
| 64 |
+
|
| 65 |
+
def log_interaction(user_id, query, answer, is_math):
|
| 66 |
+
conn = sqlite3.connect(DB_PATH)
|
| 67 |
+
cur = conn.cursor()
|
| 68 |
+
cur.execute("INSERT INTO interactions (user_id, timestamp, query, answer, is_math) VALUES (?, ?, ?, ?, ?)",
|
| 69 |
+
(user_id, datetime.utcnow().isoformat(), query, answer, 1 if is_math else 0))
|
| 70 |
+
conn.commit()
|
| 71 |
+
conn.close()
|
| 72 |
+
|
| 73 |
+
init_db()
|
| 74 |
+
|
| 75 |
+
# ---------- PDF reading ----------
|
| 76 |
+
def extract_text_from_pdf(pdf_path):
|
| 77 |
+
pages = []
|
| 78 |
+
try:
|
| 79 |
+
reader = PdfReader(pdf_path)
|
| 80 |
+
for page in reader.pages:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
try:
|
| 82 |
+
txt = page.extract_text() or ""
|
| 83 |
+
pages.append(txt)
|
|
|
|
| 84 |
except Exception:
|
| 85 |
+
continue
|
| 86 |
+
except Exception as e:
|
| 87 |
+
print("PDF read error:", e)
|
| 88 |
+
return "\n".join(pages)
|
| 89 |
+
|
| 90 |
+
def load_all_pdfs(pdf_dir):
|
| 91 |
+
texts = []
|
| 92 |
+
metas = []
|
| 93 |
+
if not os.path.isdir(pdf_dir):
|
| 94 |
+
print("PDF_DIR not found:", pdf_dir)
|
| 95 |
+
return texts, metas
|
| 96 |
+
for fname in sorted(os.listdir(pdf_dir)):
|
| 97 |
+
if fname.lower().endswith(".pdf"):
|
| 98 |
+
path = os.path.join(pdf_dir, fname)
|
| 99 |
+
print("Reading:", path)
|
| 100 |
+
text = extract_text_from_pdf(path)
|
| 101 |
+
texts.append(text)
|
| 102 |
+
metas.append({"source": fname})
|
| 103 |
+
return texts, metas
|
| 104 |
+
|
| 105 |
+
def split_text_into_chunks(text, chunk_size=CHUNK_SIZE, overlap=CHUNK_OVERLAP):
|
| 106 |
+
if not text:
|
| 107 |
return []
|
| 108 |
+
chunks = []
|
| 109 |
+
step = chunk_size - overlap
|
| 110 |
+
i = 0
|
| 111 |
+
while i < len(text):
|
| 112 |
+
chunk = text[i:i+chunk_size]
|
| 113 |
+
if chunk.strip():
|
| 114 |
+
chunks.append(chunk)
|
| 115 |
+
i += max(step, 1)
|
| 116 |
+
return chunks
|
| 117 |
+
|
| 118 |
+
# ---------- Build TF-IDF index ----------
|
| 119 |
+
print("Loading PDFs and building TF-IDF index...")
|
| 120 |
+
all_texts, all_metas = load_all_pdfs(PDF_DIR)
|
| 121 |
+
corpus_chunks = []
|
| 122 |
+
corpus_metas = []
|
| 123 |
+
for text, meta in zip(all_texts, all_metas):
|
| 124 |
+
chs = split_text_into_chunks(text)
|
| 125 |
+
corpus_chunks.extend(chs)
|
| 126 |
+
corpus_metas.extend([meta] * len(chs))
|
| 127 |
|
| 128 |
+
if len(corpus_chunks) == 0:
|
| 129 |
+
print("No PDF chunks found. Upload PDFs into pdfs/class10/")
|
| 130 |
+
|
| 131 |
+
vectorizer = None
|
| 132 |
+
tfidf_matrix = None
|
| 133 |
+
if corpus_chunks:
|
| 134 |
try:
|
| 135 |
+
vectorizer = TfidfVectorizer(stop_words="english", max_features=50000)
|
| 136 |
+
tfidf_matrix = vectorizer.fit_transform(corpus_chunks)
|
| 137 |
+
print("TF-IDF ready. Chunks:", len(corpus_chunks))
|
| 138 |
except Exception as e:
|
| 139 |
+
print("Failed to build TF-IDF:", e)
|
| 140 |
+
vectorizer = None
|
| 141 |
+
tfidf_matrix = None
|
| 142 |
+
|
| 143 |
+
def retrieve_tfidf(query, top_k=TOP_K):
|
| 144 |
+
if tfidf_matrix is None or vectorizer is None:
|
| 145 |
+
return []
|
| 146 |
+
qv = vectorizer.transform([query])
|
| 147 |
+
sims = linear_kernel(qv, tfidf_matrix).flatten()
|
| 148 |
+
idxs = sims.argsort()[::-1][:top_k]
|
| 149 |
+
results = []
|
| 150 |
+
for idx in idxs:
|
| 151 |
+
if sims[idx] <= 0:
|
| 152 |
+
continue
|
| 153 |
+
results.append({"score": float(sims[idx]), "text": corpus_chunks[idx], "meta": corpus_metas[idx]})
|
| 154 |
+
return results
|
| 155 |
+
|
| 156 |
+
# ---------- OCR and math ----------
|
| 157 |
+
def ocr_from_image(img: Image.Image):
|
| 158 |
+
try:
|
| 159 |
+
img = img.convert("RGB")
|
| 160 |
+
except Exception:
|
| 161 |
+
pass
|
| 162 |
+
try:
|
| 163 |
+
text = pytesseract.image_to_string(img, lang="asm+eng")
|
| 164 |
+
except Exception:
|
| 165 |
+
try:
|
| 166 |
+
text = pytesseract.image_to_string(img)
|
| 167 |
+
except Exception:
|
| 168 |
+
text = ""
|
| 169 |
+
return text.strip()
|
| 170 |
+
|
| 171 |
+
def is_likely_math(text: str) -> bool:
|
| 172 |
+
if not text:
|
| 173 |
+
return False
|
| 174 |
+
math_chars = set("0123456789+-*/=^()%")
|
| 175 |
+
if any(ch in text for ch in math_chars):
|
| 176 |
+
return True
|
| 177 |
+
kws = ["গণিত", "সমীকৰণ", "বীজগণিত", "math", "solve", "equation"]
|
| 178 |
+
return any(k in text for k in kws)
|
| 179 |
+
|
| 180 |
+
def solve_math_expression(expr: str):
|
| 181 |
+
try:
|
| 182 |
+
expr = expr.replace("^", "**")
|
| 183 |
+
if "=" in expr:
|
| 184 |
+
left, right = expr.split("=", 1)
|
| 185 |
+
eq = sp.Eq(sp.sympify(left), sp.sympify(right))
|
| 186 |
+
sol = sp.solve(eq)
|
| 187 |
+
return "ধাপ-ধাপে সমাধান (সংক্ষেপ):\n" + str(sol)
|
| 188 |
+
else:
|
| 189 |
+
simp = sp.simplify(sp.sympify(expr))
|
| 190 |
+
return f"সরলীকৰণ: {simp}"
|
| 191 |
+
except Exception:
|
| 192 |
+
return "গণিতীয় অভিব্যক্তি বুজা যায় নাই — দয়া কৰি সঠিকভাৱে লিখক।"
|
| 193 |
+
|
| 194 |
+
# ---------- Answering (extractive) ----------
|
| 195 |
+
def answer_with_retrieval(query, chat_history):
|
| 196 |
+
results = retrieve_tfidf(query, top_k=TOP_K)
|
| 197 |
+
if not results:
|
| 198 |
+
return "পাঠ্যপুথি সম্বন্ধীয় তথ্য নহল; দয়া কৰি অধিক স্পষ্টকৈ সোধক।"
|
| 199 |
+
# Combine top chunks as extractive answer (shorten if too long)
|
| 200 |
+
answer_parts = []
|
| 201 |
+
for r in results:
|
| 202 |
+
txt = r["text"].strip()
|
| 203 |
+
if len(txt) > 800:
|
| 204 |
+
txt = txt[:800].rsplit("\n", 1)[0] + "…"
|
| 205 |
+
answer_parts.append(f"[Source: {r['meta'].get('source','textbook')}] \n{txt}")
|
| 206 |
+
return "\n\n".join(answer_parts)
|
| 207 |
+
|
| 208 |
+
# ---------- Chat logic ----------
|
| 209 |
+
def login_user(username, user_state):
|
| 210 |
+
username = (username or "").strip()
|
| 211 |
+
if not username:
|
| 212 |
+
return user_state, "⚠️ অনুগ্ৰহ কৰি লগিনৰ বাবে এটা নাম লিখক।"
|
| 213 |
+
user_id = get_or_create_user(username)
|
| 214 |
+
user_state = {"username": username, "user_id": user_id}
|
| 215 |
+
total, math_count = 0, 0
|
| 216 |
+
try:
|
| 217 |
+
total, math_count = (lambda uid: (lambda c,m: (c,m))( * (lambda cur: (cur.execute("SELECT COUNT(*), SUM(is_math) FROM interactions WHERE user_id=?", (uid,)), cur.fetchone())[1] ) )(uid) )(user_id)
|
| 218 |
+
except Exception:
|
| 219 |
+
total, math_count = get_or_create_user(username) and (0,0)
|
| 220 |
+
stats = f"👤 {username}\n📊 মোট প্ৰশ্ন: {total}\n🧮 গণিত: {math_count}"
|
| 221 |
+
return user_state, stats
|
| 222 |
+
|
| 223 |
+
def chat_logic(username, text_input, image_input, audio_input, chat_history, user_state):
|
| 224 |
+
if chat_history is None:
|
| 225 |
+
chat_history = []
|
| 226 |
+
|
| 227 |
+
if not user_state or not user_state.get("user_id"):
|
| 228 |
+
sys_msg = "⚠️ প্ৰথমে লগিন কৰক।"
|
| 229 |
+
chat_history = chat_history + [[text_input or "", sys_msg]]
|
| 230 |
+
return chat_history, user_state, ""
|
| 231 |
+
|
| 232 |
+
user_id = user_state["user_id"]
|
| 233 |
+
final_query_parts = []
|
| 234 |
+
|
| 235 |
+
ocr_text = ""
|
| 236 |
+
if image_input:
|
| 237 |
+
try:
|
| 238 |
+
if isinstance(image_input, str):
|
| 239 |
+
img = Image.open(image_input)
|
| 240 |
+
else:
|
| 241 |
+
raw = image_input.read()
|
| 242 |
+
img = Image.open(io.BytesIO(raw))
|
| 243 |
+
ocr_text = ocr_from_image(img)
|
| 244 |
if ocr_text:
|
| 245 |
+
final_query_parts.append(ocr_text)
|
| 246 |
+
except Exception:
|
| 247 |
+
pass
|
| 248 |
+
|
| 249 |
+
if text_input:
|
| 250 |
+
final_query_parts.append(text_input)
|
| 251 |
+
|
| 252 |
+
if not final_query_parts:
|
| 253 |
+
sys_msg = "⚠️ অনুগ্ৰহ কৰি প্ৰশ্ন লিখক বা ছবি আপলোড কৰক।"
|
| 254 |
+
chat_history = chat_history + [["", sys_msg]]
|
| 255 |
+
return chat_history, user_state, ""
|
| 256 |
+
|
| 257 |
+
full_query = "\n".join(final_query_parts)
|
| 258 |
+
|
| 259 |
+
is_math_flag = is_likely_math(full_query)
|
| 260 |
+
if is_math_flag:
|
| 261 |
+
math_answer = solve_math_expression(full_query)
|
| 262 |
+
# Use extractive retrieval to provide supporting text and then math result
|
| 263 |
+
retrieval = answer_with_retrieval(full_query, chat_history)
|
| 264 |
+
final_answer = f"{retrieval}\n\nগণিত সমাধান:\n{math_answer}"
|
| 265 |
+
else:
|
| 266 |
+
final_answer = answer_with_retrieval(full_query, chat_history)
|
| 267 |
+
|
| 268 |
+
log_interaction(user_id, full_query, final_answer, is_math_flag)
|
| 269 |
+
display_q = text_input or ocr_text or "(image)"
|
| 270 |
+
chat_history = chat_history + [[display_q, final_answer]]
|
| 271 |
+
return chat_history, user_state, ""
|
| 272 |
+
|
| 273 |
+
# ---------- Gradio UI ----------
|
| 274 |
+
with gr.Blocks(title=APP_NAME) as demo:
|
| 275 |
+
gr.Markdown("# 🧭 Jajabor – Minimal TF-IDF Tutor (Free)")
|
| 276 |
+
|
| 277 |
+
user_state = gr.State({})
|
| 278 |
+
|
| 279 |
+
with gr.Row():
|
| 280 |
+
with gr.Column(scale=1):
|
| 281 |
+
username_inp = gr.Textbox(label="নাম / ইউজাৰ আইডি", placeholder="e.g. abu10")
|
| 282 |
+
login_btn = gr.Button("Login")
|
| 283 |
+
stats_md = gr.Markdown("এতিয়ালৈকে লগিন হোৱা নাই।")
|
| 284 |
+
with gr.Column(scale=3):
|
| 285 |
+
chat = gr.Chatbot(label="জাজাবৰ", height=480)
|
| 286 |
+
text_inp = gr.Textbox(label="আপোনাৰ প্ৰশ্ন লিখক", lines=2)
|
| 287 |
+
with gr.Row():
|
| 288 |
+
image_inp = gr.Image(label="📷 ছবি (Optional)", type="filepath")
|
| 289 |
+
audio_inp = gr.Audio(label="🎙️ (Optional)", type="filepath")
|
| 290 |
+
ask_btn = gr.Button("সোধক")
|
| 291 |
+
|
| 292 |
+
login_btn.click(login_user, inputs=[username_inp, user_state], outputs=[user_state, stats_md])
|
| 293 |
+
|
| 294 |
+
ask_btn.click(chat_logic, inputs=[username_inp, text_inp, image_inp, audio_inp, chat, user_state], outputs=[chat, user_state, None])
|
| 295 |
+
text_inp.submit(chat_logic, inputs=[username_inp, text_inp, image_inp, audio_inp, chat, user_state], outputs=[chat, user_state, None])
|
| 296 |
|
| 297 |
if __name__ == "__main__":
|
| 298 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|