Spaces:
Running
Running
import subprocess | |
# Install required libraries | |
subprocess.check_call(["pip", "install", "torch>=1.11.0"]) | |
subprocess.check_call(["pip", "install", "transformers>=4.31.0"]) | |
subprocess.check_call(["pip", "install", "diffusers>=0.14.0"]) | |
subprocess.check_call(["pip", "install", "librosa"]) | |
subprocess.check_call(["pip", "install", "accelerate>=0.20.1"]) | |
subprocess.check_call(["pip", "install", "gradio>=3.35.2"]) | |
import os | |
import threading | |
import numpy as np | |
import librosa | |
import torch | |
import gradio as gr | |
from functools import lru_cache | |
from transformers import pipeline | |
from huggingface_hub import login | |
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler | |
# Ensure required dependencies are installed | |
def install_missing_packages(): | |
required_packages = { | |
"librosa": None, | |
"diffusers": ">=0.14.0", | |
"gradio": ">=3.35.2", | |
"huggingface_hub": None, | |
"accelerate": ">=0.20.1", | |
"transformers": ">=4.31.0" | |
} | |
for package, version in required_packages.items(): | |
try: | |
__import__(package) | |
except ImportError: | |
package_name = f"{package}{version}" if version else package | |
subprocess.check_call(["pip", "install", package_name]) | |
install_missing_packages() | |
# Get Hugging Face token for authentication | |
hf_token = os.getenv("HF_TOKEN") | |
if hf_token: | |
login(hf_token) | |
else: | |
raise ValueError("HF_TOKEN environment variable not set.") | |
# Load speech-to-text model (Whisper) | |
speech_to_text = pipeline( | |
"automatic-speech-recognition", | |
model="openai/whisper-tiny", | |
return_timestamps=True | |
) | |
# Load Stable Diffusion model for text-to-image | |
text_to_image = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
text_to_image.to(device) | |
text_to_image.enable_attention_slicing() | |
text_to_image.safety_checker = None | |
text_to_image.scheduler = DPMSolverMultistepScheduler.from_config(text_to_image.scheduler.config) | |
# Preprocess audio file into NumPy array | |
def preprocess_audio(audio_path): | |
try: | |
audio, sr = librosa.load(audio_path, sr=16000) # Resample to 16kHz | |
return np.array(audio, dtype=np.float32) | |
except Exception as e: | |
return f"Error in preprocessing audio: {str(e)}" | |
# Speech-to-text function with long-form transcription support | |
def transcribe_audio(audio_path): | |
try: | |
audio_array = preprocess_audio(audio_path) | |
if isinstance(audio_array, str): # Error message from preprocessing | |
return audio_array | |
result = speech_to_text(audio_array) | |
# Combine text from multiple segments for long-form transcription | |
transcription = " ".join(segment["text"] for segment in result["chunks"]) | |
return transcription | |
except Exception as e: | |
return f"Error in transcription: {str(e)}" | |
# Text-to-image function | |
def generate_image_from_text(text): | |
try: | |
image = text_to_image(text, height=256, width=256).images[0] # Generate smaller images for speed | |
return image | |
except Exception as e: | |
return f"Error in image generation: {str(e)}" | |
# Optimized combined processing function | |
def process_audio_and_generate_image(audio_path): | |
transcription_result = {"result": None} | |
image_result = {"result": None} | |
# Function to run transcription and image generation in parallel | |
def transcription_thread(): | |
transcription_result["result"] = transcribe_audio(audio_path) | |
def image_generation_thread(): | |
transcription = transcription_result["result"] | |
if transcription and "Error" not in transcription: | |
image_result["result"] = generate_image_from_text(transcription) | |
# Start both tasks in parallel | |
t1 = threading.Thread(target=transcription_thread) | |
t2 = threading.Thread(target=image_generation_thread) | |
t1.start() | |
t2.start() | |
t1.join() # Wait for transcription to finish | |
t2.join() # Wait for image generation to finish | |
transcription = transcription_result["result"] | |
image = image_result["result"] | |
if "Error" in transcription: | |
return None, transcription | |
if isinstance(image, str) and "Error" in image: | |
return None, image | |
return image, transcription | |
# Gradio interface for speech-to-text | |
speech_to_text_iface = gr.Interface( | |
fn=transcribe_audio, | |
inputs=gr.Audio(type="filepath", label="Upload audio file for transcription (WAV/MP3)"), | |
outputs=gr.Textbox(label="Transcription"), | |
title="Speech-to-Text Transcription", | |
description="Upload an audio file to transcribe speech into text.", | |
) | |
# Gradio interface for voice-to-image | |
voice_to_image_iface = gr.Interface( | |
fn=process_audio_and_generate_image, | |
inputs=gr.Audio(type="filepath", label="Upload audio file (WAV/MP3)"), | |
outputs=[gr.Image(label="Generated Image"), gr.Textbox(label="Transcription")], | |
title="Voice-to-Image Generator", | |
description="Upload an audio file to transcribe speech to text, and then generate an image based on the transcription.", | |
) | |
# Combined Gradio app | |
iface = gr.TabbedInterface( | |
interface_list=[speech_to_text_iface, voice_to_image_iface], | |
tab_names=["Speech-to-Text", "Voice-to-Image"] | |
) | |
# Launch Gradio interface | |
iface.launch(debug=True, share=True) | |