Spaces:
Running
Running
import pandas as pd | |
def clean_lat_long(df) -> pd.DataFrame: | |
""" | |
Clean latitude and longitude columns in the DataFrame. | |
Ensure lat and lon are numeric, coerce errors to NaN | |
Args: | |
df (pd.DataFrame): DataFrame containing latitude and longitude columns. | |
Returns: | |
pd.DataFrame: DataFrame with cleaned latitude and longitude columns. | |
""" | |
df['lat'] = pd.to_numeric(df['lat'], errors='coerce') | |
df['lon'] = pd.to_numeric(df['lon'], errors='coerce') | |
# Drop rows with NaN in lat or lon | |
df = df.dropna(subset=['lat', 'lon']).reset_index(drop=True) | |
return df | |
def clean_date(df) -> pd.DataFrame: # Ensure lat and lon are numeric, coerce errors to NaN | |
""" | |
Clean date column in the DataFrame. | |
Args: | |
df (pd.DataFrame): DataFrame containing date column. | |
Returns: | |
pd.DataFrame: DataFrame with cleaned date column. | |
""" | |
df['date'] = pd.to_datetime(df['date'], errors='coerce') | |
# Drop rows with NaN in lat or lon | |
df = df.dropna(subset=['date']).reset_index(drop=True) | |
return df |