jsr90 commited on
Commit
1cea55c
·
1 Parent(s): f119fa7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -6
app.py CHANGED
@@ -11,7 +11,7 @@ def predict(image_in_img, image_in_video):
11
  if image_in_video == None and image_in_img == None: # If both inputs are None, raise an error
12
  raise gr.Error("Please upload an image.")
13
  if image_in_video or image_in_img: # If either input is not None,
14
- image = image_in_video or image_in_img # set the image variable to the non-None input
15
  return model(image).render()[0] # Use the YOLOv5 model to predict objects in the image and return the rendered output
16
 
17
  # Define a function to toggle between webcam and file inputs
@@ -21,6 +21,9 @@ def toggle(choice):
21
  else: # Otherwise, if "file" is selected,
22
  return gr.update(visible=False, value=None), gr.update(visible=True, value=None) # Show file input and hide webcam input
23
 
 
 
 
24
  # Create Gradio UI blocks
25
  with gr.Blocks() as blocks:
26
  gr.Markdown("# CiclopeIA: Imaginando tu futuro") # Display text in Markdown format
@@ -29,24 +32,32 @@ with gr.Blocks() as blocks:
29
  with gr.Row(): # Create a row of UI elements
30
  with gr.Column(): # Create a column of UI elements
31
  # Create a radio button to choose between webcam and file inputs
32
- image_or_file_opt = gr.Radio(["webcam", "file"], value="file",
33
  label="How would you like to upload your image?")
34
- # Create an image input for the webcam
35
- image_in_video = gr.Image(source="webcam", type="filepath")
36
  # Create an image input for a file, initially hidden
37
  image_in_img = gr.Image(
38
- source="upload", visible=False, type="filepath")
39
-
 
 
40
  # Bind the toggle function to the radio button to switch between webcam and file inputs
41
  image_or_file_opt.change(fn=toggle, inputs=[image_or_file_opt],
42
  outputs=[image_in_video, image_in_img], queue=False)
43
  with gr.Column(): # Create another column of UI elements
44
  # Create an output image to display the predicted objects
45
  image_out = gr.Image()
 
46
  # Create a button to run the prediction function and display the output image
47
  run_btn = gr.Button("Run")
48
  run_btn.click(fn=predict, inputs=[
49
  image_in_img, image_in_video], outputs=[image_out])
50
 
 
 
 
 
 
 
51
  # Launch the Gradio UI blocks
52
  blocks.launch()
 
 
11
  if image_in_video == None and image_in_img == None: # If both inputs are None, raise an error
12
  raise gr.Error("Please upload an image.")
13
  if image_in_video or image_in_img: # If either input is not None,
14
+ image = image_in_video or image_in_img # set the image variable to the non-None input
15
  return model(image).render()[0] # Use the YOLOv5 model to predict objects in the image and return the rendered output
16
 
17
  # Define a function to toggle between webcam and file inputs
 
21
  else: # Otherwise, if "file" is selected,
22
  return gr.update(visible=False, value=None), gr.update(visible=True, value=None) # Show file input and hide webcam input
23
 
24
+ # Examples to test
25
+ ex = [["img1.jpeg"], ["img2.jpeg"], ["img3.jpeg"]]
26
+
27
  # Create Gradio UI blocks
28
  with gr.Blocks() as blocks:
29
  gr.Markdown("# CiclopeIA: Imaginando tu futuro") # Display text in Markdown format
 
32
  with gr.Row(): # Create a row of UI elements
33
  with gr.Column(): # Create a column of UI elements
34
  # Create a radio button to choose between webcam and file inputs
35
+ image_or_file_opt = gr.Radio(["file", "webcam"], value="file",
36
  label="How would you like to upload your image?")
 
 
37
  # Create an image input for a file, initially hidden
38
  image_in_img = gr.Image(
39
+ source="upload", type="filepath")
40
+ # Create an image input for the webcam
41
+ image_in_video = gr.Image(source="webcam", visible=False, type="filepath")
42
+
43
  # Bind the toggle function to the radio button to switch between webcam and file inputs
44
  image_or_file_opt.change(fn=toggle, inputs=[image_or_file_opt],
45
  outputs=[image_in_video, image_in_img], queue=False)
46
  with gr.Column(): # Create another column of UI elements
47
  # Create an output image to display the predicted objects
48
  image_out = gr.Image()
49
+
50
  # Create a button to run the prediction function and display the output image
51
  run_btn = gr.Button("Run")
52
  run_btn.click(fn=predict, inputs=[
53
  image_in_img, image_in_video], outputs=[image_out])
54
 
55
+ gr.Examples(
56
+ examples = ex,
57
+ inputs = [image_in_img, image_in_video],
58
+ outputs = image_out,
59
+ )
60
+
61
  # Launch the Gradio UI blocks
62
  blocks.launch()
63
+