Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import seaborn as sns
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from sklearn.preprocessing import StandardScaler
|
7 |
+
from sklearn.model_selection import train_test_split
|
8 |
+
from keras.models import Sequential
|
9 |
+
from keras.layers import InputLayer, Dense
|
10 |
+
from sklearn.datasets import make_circles, make_classification, make_moons, make_blobs
|
11 |
+
from mlxtend.plotting import plot_decision_regions
|
12 |
+
from keras.optimizers import SGD
|
13 |
+
import time
|
14 |
+
|
15 |
+
# Custom background and styling
|
16 |
+
st.markdown(
|
17 |
+
"""
|
18 |
+
<style>
|
19 |
+
.main {
|
20 |
+
background: linear-gradient(to right, #f0f4f8, #d9e2ec);
|
21 |
+
}
|
22 |
+
</style>
|
23 |
+
""",
|
24 |
+
unsafe_allow_html=True
|
25 |
+
)
|
26 |
+
|
27 |
+
# App Title
|
28 |
+
st.title("๐ง NeuroVision Lab - Interactive Neural Network Playground")
|
29 |
+
|
30 |
+
# Sidebar: Dataset selection
|
31 |
+
st.sidebar.header("๐ฒ Generate Synthetic Data")
|
32 |
+
data_type = st.sidebar.selectbox("Select Dataset Type", ["make_circles", "make_classification", "make_moons", "make_blobs"])
|
33 |
+
factor = st.sidebar.slider("Circle Factor (for make_circles)", 0.1, 1.0, 0.2)
|
34 |
+
noise = st.sidebar.slider("Add Noise", 0.0, 1.0, 0.1)
|
35 |
+
samples = st.sidebar.slider("Total Samples", 1000, 10000, 10000, step=100)
|
36 |
+
|
37 |
+
generate_scatter = st.sidebar.button("๐ Create Dataset")
|
38 |
+
|
39 |
+
# Initialize session state
|
40 |
+
if 'X' not in st.session_state:
|
41 |
+
st.session_state['X'] = None
|
42 |
+
if 'y' not in st.session_state:
|
43 |
+
st.session_state['y'] = None
|
44 |
+
|
45 |
+
# Function to generate data
|
46 |
+
def generate_data(data_type, samples, noise, factor):
|
47 |
+
if data_type == "make_circles":
|
48 |
+
st.session_state['X'], st.session_state['y'] = make_circles(n_samples=samples, noise=noise, factor=factor, random_state=42)
|
49 |
+
elif data_type == "make_classification":
|
50 |
+
st.session_state['X'], st.session_state['y'] = make_classification(n_samples=samples, n_features=2, n_informative=2,
|
51 |
+
n_redundant=0, n_clusters_per_class=1, flip_y=noise, random_state=42)
|
52 |
+
elif data_type == "make_moons":
|
53 |
+
st.session_state['X'], st.session_state['y'] = make_moons(n_samples=samples, noise=noise, random_state=42)
|
54 |
+
elif data_type == "make_blobs":
|
55 |
+
st.session_state['X'], st.session_state['y'] = make_blobs(n_samples=samples, centers=2, cluster_std=1.0, random_state=42)
|
56 |
+
|
57 |
+
# Scatterplot of generated data
|
58 |
+
if generate_scatter:
|
59 |
+
generate_data(data_type, samples, noise, factor)
|
60 |
+
if st.session_state['X'] is not None and st.session_state['y'] is not None:
|
61 |
+
df = pd.DataFrame(st.session_state['X'], columns=["x1", "x2"])
|
62 |
+
df["label"] = st.session_state['y']
|
63 |
+
|
64 |
+
st.subheader(f"๐งฉ Visualizing: {data_type}")
|
65 |
+
fig1, ax1 = plt.subplots()
|
66 |
+
sns.scatterplot(data=df, x="x1", y="x2", hue="label", palette="viridis", ax=ax1)
|
67 |
+
st.pyplot(fig1)
|
68 |
+
else:
|
69 |
+
st.warning("Data generation unsuccessful. Please check your parameters.")
|
70 |
+
|
71 |
+
# Sidebar: Training Configuration
|
72 |
+
st.sidebar.header("โ๏ธ Model Configuration")
|
73 |
+
test_percent = st.sidebar.slider("Test Set (%)", 10, 90, 20)
|
74 |
+
test_size = test_percent / 100
|
75 |
+
learning_rate = st.sidebar.selectbox("Choose Learning Rate", [0.0001, 0.001, 0.01, 0.1])
|
76 |
+
act_fun = st.sidebar.selectbox("Activation Function", ["sigmoid", "tanh", "relu"])
|
77 |
+
batch_size = st.sidebar.slider("Batch Size", 1, 10000, 6400)
|
78 |
+
epochs = st.sidebar.slider("Training Epochs", 1, 1000, 600)
|
79 |
+
|
80 |
+
# Train Model and Plot Decision Surface
|
81 |
+
if st.sidebar.button("๐งฎ Train Model & Show Decision Surface"):
|
82 |
+
if st.session_state['X'] is None or st.session_state['y'] is None:
|
83 |
+
st.error("โ ๏ธ Please generate a dataset first.")
|
84 |
+
else:
|
85 |
+
# Preprocessing
|
86 |
+
x_train, x_test, y_train, y_test = train_test_split(st.session_state['X'], st.session_state['y'], test_size=test_size, stratify=st.session_state['y'], random_state=1)
|
87 |
+
scaler = StandardScaler()
|
88 |
+
x_train = scaler.fit_transform(x_train)
|
89 |
+
x_test = scaler.transform(x_test)
|
90 |
+
|
91 |
+
# Build model
|
92 |
+
model = Sequential()
|
93 |
+
model.add(InputLayer(input_shape=(2,)))
|
94 |
+
for units in [4, 2, 2]:
|
95 |
+
model.add(Dense(units, activation=act_fun))
|
96 |
+
model.add(Dense(1, activation="sigmoid"))
|
97 |
+
|
98 |
+
sgd = SGD(learning_rate=learning_rate)
|
99 |
+
model.compile(optimizer=sgd, loss="binary_crossentropy", metrics=["accuracy"])
|
100 |
+
|
101 |
+
# Show training progress
|
102 |
+
st.subheader("๐ Model Training Progress")
|
103 |
+
progress_bar = st.progress(0)
|
104 |
+
progress_pct = st.empty()
|
105 |
+
|
106 |
+
history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=0, validation_split=0.2)
|
107 |
+
for epoch in range(epochs):
|
108 |
+
progress = int((epoch + 1) / epochs * 100)
|
109 |
+
progress_bar.progress(progress)
|
110 |
+
progress_pct.write(f"{progress}%")
|
111 |
+
time.sleep(0.01)
|
112 |
+
|
113 |
+
# Decision surface visualization
|
114 |
+
st.subheader("๐ง Neural Network Decision Boundary")
|
115 |
+
fig2, ax2 = plt.subplots()
|
116 |
+
plot_decision_regions(x_train, y_train, clf=model, legend=2, ax=ax2)
|
117 |
+
st.pyplot(fig2)
|
118 |
+
|
119 |
+
st.session_state['history'] = history
|
120 |
+
|
121 |
+
# Show Loss Curve
|
122 |
+
if st.sidebar.button("๐ Display Loss Curve"):
|
123 |
+
if 'history' in st.session_state:
|
124 |
+
st.subheader("๐ Training vs Validation Loss")
|
125 |
+
history = st.session_state['history']
|
126 |
+
fig3, ax3 = plt.subplots()
|
127 |
+
ax3.plot(history.history['loss'], label='Train Loss')
|
128 |
+
ax3.plot(history.history['val_loss'], label='Val Loss')
|
129 |
+
ax3.set_xlabel("Epochs")
|
130 |
+
ax3.set_ylabel("Loss")
|
131 |
+
ax3.set_title("Loss Progress Over Time")
|
132 |
+
ax3.legend()
|
133 |
+
st.pyplot(fig3)
|
134 |
+
else:
|
135 |
+
st.warning("โณ Train the model to visualize the loss curve.")
|