Update app.py
Browse files
app.py
CHANGED
@@ -40,19 +40,15 @@ st.markdown(
|
|
40 |
|
41 |
# Title
|
42 |
st.markdown("<div class='title'>General Algorithm</div><br>", unsafe_allow_html=True)
|
43 |
-
st.markdown("<div class='content'>At the time of training, the machine requires two things: Data & Algorithm.</div>", unsafe_allow_html=True)
|
44 |
-
|
45 |
# Basic Steps
|
46 |
st.markdown("<div class='header'>Basic Steps</div><br>", unsafe_allow_html=True)
|
47 |
st.markdown("<div class='content'>1. While guiding the machine, the main guidance comes from how we preprocess our data and choose the algorithm.</div>", unsafe_allow_html=True)
|
48 |
st.markdown("<div class='content'>2. If we preprocess the data incorrectly and choose the wrong algorithm, it leads to bad model performance.</div>", unsafe_allow_html=True)
|
49 |
st.markdown("<div class='content'>3. Inside the algorithm, there will be steps that the machine must follow while learning.</div>", unsafe_allow_html=True)
|
50 |
-
|
51 |
# Based on the Algorithm
|
52 |
st.markdown("<div class='header'>Based on the Algorithm</div><br>", unsafe_allow_html=True)
|
53 |
st.markdown("<div class='content'>1. Identify whether the algorithm is Supervised, Unsupervised, Semi-supervised, or Reinforcement Learning.</div>", unsafe_allow_html=True)
|
54 |
st.markdown("<div class='content'>2. If we choose Supervised Learning, we must decide between Classification or Regression based on the problem and data.</div>", unsafe_allow_html=True)
|
55 |
-
|
56 |
# Preprocessing Steps
|
57 |
st.markdown("<div class='header'>Basic Steps Before Training</div><br>", unsafe_allow_html=True)
|
58 |
st.markdown("<div class='content'>1. When working with preprocessed tabular data, identify the feature variables and class variables.</div>", unsafe_allow_html=True)
|
@@ -61,7 +57,6 @@ st.markdown("<div class='content'><b>Feature Variables:</b> Sepal Length, Sepal
|
|
61 |
st.markdown("<div class='content'><b>Class Variable:</b> Species</div>", unsafe_allow_html=True)
|
62 |
st.markdown("<div class='content'>2. Divide the entire data into feature variables and class variables.</div>", unsafe_allow_html=True)
|
63 |
st.markdown("<div class='content'>3. Now split the data into Training Set (DTrain) and Test Set (DTest).</div>", unsafe_allow_html=True)
|
64 |
-
|
65 |
# Conditions for splitting
|
66 |
st.markdown("<div class='header'>Conditions</div><br>", unsafe_allow_html=True)
|
67 |
st.markdown("<div class='content'>1. Majority of the data should be in DTrain.</div>", unsafe_allow_html=True)
|
@@ -77,7 +72,7 @@ col1, col2, col3 = st.columns(3)
|
|
77 |
|
78 |
with col1:
|
79 |
if st.button("KNN Algorithm"):
|
80 |
-
st.switch_page("pages/
|
81 |
|
82 |
with col2:
|
83 |
if st.button("Decision Tree"):
|
|
|
40 |
|
41 |
# Title
|
42 |
st.markdown("<div class='title'>General Algorithm</div><br>", unsafe_allow_html=True)
|
|
|
|
|
43 |
# Basic Steps
|
44 |
st.markdown("<div class='header'>Basic Steps</div><br>", unsafe_allow_html=True)
|
45 |
st.markdown("<div class='content'>1. While guiding the machine, the main guidance comes from how we preprocess our data and choose the algorithm.</div>", unsafe_allow_html=True)
|
46 |
st.markdown("<div class='content'>2. If we preprocess the data incorrectly and choose the wrong algorithm, it leads to bad model performance.</div>", unsafe_allow_html=True)
|
47 |
st.markdown("<div class='content'>3. Inside the algorithm, there will be steps that the machine must follow while learning.</div>", unsafe_allow_html=True)
|
|
|
48 |
# Based on the Algorithm
|
49 |
st.markdown("<div class='header'>Based on the Algorithm</div><br>", unsafe_allow_html=True)
|
50 |
st.markdown("<div class='content'>1. Identify whether the algorithm is Supervised, Unsupervised, Semi-supervised, or Reinforcement Learning.</div>", unsafe_allow_html=True)
|
51 |
st.markdown("<div class='content'>2. If we choose Supervised Learning, we must decide between Classification or Regression based on the problem and data.</div>", unsafe_allow_html=True)
|
|
|
52 |
# Preprocessing Steps
|
53 |
st.markdown("<div class='header'>Basic Steps Before Training</div><br>", unsafe_allow_html=True)
|
54 |
st.markdown("<div class='content'>1. When working with preprocessed tabular data, identify the feature variables and class variables.</div>", unsafe_allow_html=True)
|
|
|
57 |
st.markdown("<div class='content'><b>Class Variable:</b> Species</div>", unsafe_allow_html=True)
|
58 |
st.markdown("<div class='content'>2. Divide the entire data into feature variables and class variables.</div>", unsafe_allow_html=True)
|
59 |
st.markdown("<div class='content'>3. Now split the data into Training Set (DTrain) and Test Set (DTest).</div>", unsafe_allow_html=True)
|
|
|
60 |
# Conditions for splitting
|
61 |
st.markdown("<div class='header'>Conditions</div><br>", unsafe_allow_html=True)
|
62 |
st.markdown("<div class='content'>1. Majority of the data should be in DTrain.</div>", unsafe_allow_html=True)
|
|
|
72 |
|
73 |
with col1:
|
74 |
if st.button("KNN Algorithm"):
|
75 |
+
st.switch_page("pages/1KNN Alogrithm.py")
|
76 |
|
77 |
with col2:
|
78 |
if st.button("Decision Tree"):
|