Sathwikchowdary's picture
Update pages/1KNN Alogrithm.py
4d49281 verified
import streamlit as st
# Page configuration
st.set_page_config(page_title="KNN Overview", page_icon="πŸ“Š", layout="wide")
# Custom CSS styling for a cleaner, light-colored interface
st.markdown("""
<style>
.stApp {
background-color: #f2f6fa;
}
h1, h2, h3 {
color: #1a237e;
}
.custom-font, p {
font-family: 'Arial', sans-serif;
font-size: 18px;
color: #212121;
line-height: 1.6;
}
</style>
""", unsafe_allow_html=True)
# Title
st.markdown("<h1 style='color: #1a237e;'>Understanding K-Nearest Neighbors (KNN)</h1>", unsafe_allow_html=True)
# Introduction to KNN
st.write("""
K-Nearest Neighbors (KNN) is a fundamental machine learning method suitable for both **classification** and **regression** problems. It makes predictions by analyzing the `K` closest data points in the training set.
Key features:
- KNN is a non-parametric model.
- It memorizes training data instead of learning a model.
- Distance metrics like **Euclidean** help determine similarity between data points.
""")
# How KNN Works
st.markdown("<h2 style='color: #1a237e;'>How KNN Functions</h2>", unsafe_allow_html=True)
st.subheader("Training Phase")
st.write("""
- KNN doesn't train a model in the traditional sense.
- It stores the dataset and uses it during prediction.
""")
st.subheader("Prediction - Classification")
st.write("""
1. Set the value of `k`.
2. Calculate the distance between the input and each point in the training data.
3. Identify the `k` nearest neighbors.
4. Use majority voting to assign the class label.
""")
st.subheader("Prediction - Regression")
st.write("""
1. Choose `k`.
2. Find the distances to all training points.
3. Pick the closest `k` neighbors.
4. Predict using the **average** or **weighted average** of their values.
""")
# Overfitting and Underfitting
st.subheader("Model Behavior")
st.write("""
- **Overfitting**: Occurs when the model captures noise by using very low values of `k`.
- **Underfitting**: Happens when the model oversimplifies, often with high `k` values.
- **Optimal Fit**: Found by balancing both, often using cross-validation.
""")
# Training vs CV Error
st.subheader("Error Analysis")
st.write("""
- **Training Error**: Error on the dataset used for fitting.
- **Cross-Validation Error**: Error on separate validation data.
- Ideal models show low error in both.
""")
# Hyperparameter Tuning
st.subheader("Hyperparameter Choices")
st.write("""
Important tuning options for KNN include:
- `k`: Number of neighbors
- `weights`: `uniform` or `distance`
- `metric`: Distance formula like Euclidean or Manhattan
- `n_jobs`: Parallel processing support
""")
# Scaling
st.subheader("Why Scaling is Crucial")
st.write("""
KNN relies heavily on distances, so it's essential to scale features. Use:
- **Min-Max Normalization** to compress values between 0 and 1.
- **Z-score Standardization** to center data.
Always scale training and testing data separately.
""")
# Weighted KNN
st.subheader("Weighted KNN")
st.write("""
In Weighted KNN, closer neighbors have more influence on the result. It improves accuracy, especially in noisy or uneven data.
""")
# Decision Regions
st.subheader("Decision Boundaries")
st.write("""
KNN creates boundaries based on training data:
- Small `k` = complex, sensitive regions (risk of overfitting).
- Large `k` = smoother regions (risk of underfitting).
""")
# Cross Validation
st.subheader("Cross-Validation")
st.write("""
Cross-validation helps evaluate models effectively. For example:
- **K-Fold CV** divides data into parts and tests each part.
- Ensures model generalization.
""")
# Hyperparameter Optimization Techniques
st.subheader("Tuning Methods")
st.write("""
- **Grid Search**: Tests all combinations of parameters.
- **Random Search**: Picks random combinations for faster tuning.
- **Bayesian Search**: Uses previous results to make better guesses on parameter selection.
""")
# Notebook Link
st.markdown("<h2 style='color: #1a237e;'>KNN Implementation Notebook</h2>", unsafe_allow_html=True)
st.markdown(
"<a href='https://colab.research.google.com/drive/11wk6wt7sZImXhTqzYrre3ic4oj3KFC4M?usp=sharing' target='_blank' style='font-size: 16px; color: #1a237e;'>Click here to open the Colab notebook</a>",
unsafe_allow_html=True
)
st.write("""
KNN is intuitive and effective when combined with proper preprocessing and hyperparameter tuning. Use cross-validation to find the sweet spot and avoid overfitting or underfitting.
""")