Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,13 +4,7 @@ import streamlit as st
|
|
4 |
from transformers import AutoTokenizer, AutoModelWithLMHead
|
5 |
from transformers import pipeline
|
6 |
|
7 |
-
#tokenizer = AutoTokenizer.from_pretrained("gpt2-medium")
|
8 |
sentiment_tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-imdb-sentiment")
|
9 |
-
|
10 |
-
@st.cache
|
11 |
-
def load_model(model_name):
|
12 |
-
model = AutoModelWithLMHead.from_pretrained(model_name)
|
13 |
-
return model
|
14 |
|
15 |
def load_text_gen_model():
|
16 |
generator = pipeline("text-generation", model="gpt2-medium")
|
@@ -20,18 +14,19 @@ def load_text_gen_model():
|
|
20 |
def get_sentiment_model():
|
21 |
sentiment_model = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-imdb-sentiment")
|
22 |
return sentiment_model
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
24 |
def get_sentiment(text):
|
25 |
input_ids = sentiment_tokenizer .encode(text + '</s>', return_tensors='pt')
|
26 |
-
output =
|
27 |
dec = [sentiment_tokenizer.decode(ids) for ids in output]
|
28 |
label = dec[0]
|
29 |
return label
|
30 |
|
31 |
-
#@st.cache(allow_output_mutation=True)
|
32 |
-
def get_summarizer():
|
33 |
-
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
34 |
-
return summarizer
|
35 |
|
36 |
def get_qa_model():
|
37 |
model_name = "deepset/roberta-base-squad2"
|
@@ -39,11 +34,9 @@ def get_qa_model():
|
|
39 |
qa_pipeline = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
40 |
return qa_pipeline
|
41 |
|
42 |
-
|
43 |
-
summarizer =
|
44 |
-
|
45 |
-
|
46 |
-
#text_generator = load_text_gen_model()
|
47 |
|
48 |
action = st.sidebar.selectbox("Pick an Action", ["Analyse a Review","Generate an Article","Create an Image"])
|
49 |
|
@@ -63,7 +56,7 @@ if action == "Analyse a Review":
|
|
63 |
if st.button("Find the key topic"):
|
64 |
QA_input = {'question': 'what is the review about?',
|
65 |
'context': review}
|
66 |
-
answer =
|
67 |
st.write(answer)
|
68 |
|
69 |
|
|
|
4 |
from transformers import AutoTokenizer, AutoModelWithLMHead
|
5 |
from transformers import pipeline
|
6 |
|
|
|
7 |
sentiment_tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-imdb-sentiment")
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
def load_text_gen_model():
|
10 |
generator = pipeline("text-generation", model="gpt2-medium")
|
|
|
14 |
def get_sentiment_model():
|
15 |
sentiment_model = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-imdb-sentiment")
|
16 |
return sentiment_model
|
17 |
+
|
18 |
+
def get_summarizer_model():
|
19 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
20 |
+
return summarizer
|
21 |
+
|
22 |
+
|
23 |
def get_sentiment(text):
|
24 |
input_ids = sentiment_tokenizer .encode(text + '</s>', return_tensors='pt')
|
25 |
+
output = sentiment_extractor.generate(input_ids=input_ids,max_length=2)
|
26 |
dec = [sentiment_tokenizer.decode(ids) for ids in output]
|
27 |
label = dec[0]
|
28 |
return label
|
29 |
|
|
|
|
|
|
|
|
|
30 |
|
31 |
def get_qa_model():
|
32 |
model_name = "deepset/roberta-base-squad2"
|
|
|
34 |
qa_pipeline = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
35 |
return qa_pipeline
|
36 |
|
37 |
+
sentiment_extractor = get_sentiment_model()
|
38 |
+
summarizer = get_summarizer_model()
|
39 |
+
answer_generator = get_qa_model()
|
|
|
|
|
40 |
|
41 |
action = st.sidebar.selectbox("Pick an Action", ["Analyse a Review","Generate an Article","Create an Image"])
|
42 |
|
|
|
56 |
if st.button("Find the key topic"):
|
57 |
QA_input = {'question': 'what is the review about?',
|
58 |
'context': review}
|
59 |
+
answer = answer_generator(QA_input)
|
60 |
st.write(answer)
|
61 |
|
62 |
|