Sasidhar commited on
Commit
73a72e4
·
1 Parent(s): 5039e23

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -19
app.py CHANGED
@@ -1,4 +1,5 @@
1
  import streamlit as st
 
2
  from annotated_text import annotated_text
3
  from io import StringIO
4
  from transformers import AutoTokenizer, AutoModelForTokenClassification
@@ -47,23 +48,23 @@ def init_qa_pipeline():
47
 
48
  def get_formatted_text_for_annotation(output):
49
  colour_map = {'Coreference': '#29D93B',
50
- 'Severity':'#291923',
51
- 'Sex': '#330460',
52
- 'Sign_symptom': '#5448AD',
53
  'Detailed_description': '#078E8B',
54
- 'Date': '#C19616',
55
- 'History': '#1A9903',
56
- 'Medication': '#16B01A',
57
- 'Therapeutic_procedure': '#6642A8',
58
- 'Age': '#F4A936',
59
- 'Subject': '#38C708',
60
- 'Biological_structure': '#106C6C',
61
- 'Activity': '#E017C8',
62
- 'Lab_value': '#66011C',
63
- 'Family_history': '#3EEEBB',
64
- 'Diagnostic_procedure': '#22C61D',
65
- 'Other_event': '#ACC61D',
66
- 'Occupation': '#521382'}
67
 
68
  annotated_texts = []
69
  next_index = 0
@@ -223,16 +224,25 @@ if selected_menu == "Upload Document":
223
  if uploaded_file is not None:
224
  ocr_text = get_text_from_ocr_engine()
225
  st.write("Upload Successful")
 
226
  elif selected_menu == "Extract Text":
227
- st.write(get_text_from_ocr_engine())
 
 
 
228
  elif selected_menu == "Summarize Document":
229
  paragraphs= get_paragraphs_for_summaries()
230
 
231
- with st.spinner("Summarizing Document..."):
232
  tags_found = ["Injury Details", "Past Medical Conditions", "Injury Management Plan", "GP Correspondence"]
 
233
  st.write("This document is about:")
234
- st.write(";".join(["#" + tag for tag in tags_found]))
235
  st.markdown("""---""")
 
 
 
 
236
  for text in paragraphs:
237
  summary_text = pipeline_summarization(text, max_length=130, min_length=30, do_sample=False)
238
  # Show output
 
1
  import streamlit as st
2
+ import time
3
  from annotated_text import annotated_text
4
  from io import StringIO
5
  from transformers import AutoTokenizer, AutoModelForTokenClassification
 
48
 
49
  def get_formatted_text_for_annotation(output):
50
  colour_map = {'Coreference': '#29D93B',
51
+ 'Severity':'#FCF3CF',
52
+ 'Sex': '#E9F7EF',
53
+ 'Sign_symptom': '#EAF2F8',
54
  'Detailed_description': '#078E8B',
55
+ 'Date': '#F5EEF8',
56
+ 'History': '#FDEDEC',
57
+ 'Medication': '#F4F6F6',
58
+ 'Therapeutic_procedure': '#A3E4D7',
59
+ 'Age': '#85C1E9',
60
+ 'Subject': '#D7BDE2',
61
+ 'Biological_structure': '#AF7AC5',
62
+ 'Activity': '#B2BABB',
63
+ 'Lab_value': '#E6B0AA',
64
+ 'Family_history': '#2471A3',
65
+ 'Diagnostic_procedure': '#CCD1D1',
66
+ 'Other_event': '#239B56',
67
+ 'Occupation': '#B3B6B7'}
68
 
69
  annotated_texts = []
70
  next_index = 0
 
224
  if uploaded_file is not None:
225
  ocr_text = get_text_from_ocr_engine()
226
  st.write("Upload Successful")
227
+
228
  elif selected_menu == "Extract Text":
229
+ with st.spinner("Extracting Text..."):
230
+ time.sleep(6)
231
+ st.write(get_text_from_ocr_engine())
232
+
233
  elif selected_menu == "Summarize Document":
234
  paragraphs= get_paragraphs_for_summaries()
235
 
236
+ with st.spinner("Finding Topics..."):
237
  tags_found = ["Injury Details", "Past Medical Conditions", "Injury Management Plan", "GP Correspondence"]
238
+ time.sleep(5)
239
  st.write("This document is about:")
240
+ st.markdown(";".join(["#" + tag + " " for tag in tags_found])**)
241
  st.markdown("""---""")
242
+
243
+ with st.spinner("Summarizing Document..."):
244
+
245
+
246
  for text in paragraphs:
247
  summary_text = pipeline_summarization(text, max_length=130, min_length=30, do_sample=False)
248
  # Show output