radames commited on
Commit
cc5d68e
1 Parent(s): 8a54a25

remove multi decoder

Browse files
Files changed (1) hide show
  1. app.py +5 -7
app.py CHANGED
@@ -13,16 +13,13 @@ import uuid
13
  device = "cuda" if torch.cuda.is_available() else "cpu"
14
  dtype = torch.float16
15
 
16
- MULTI_DECODER = (
17
- torch.cuda.get_device_properties(0).total_memory < 18 * 1024 * 1024 * 1024
18
- )
19
- LOW_MEMORY = os.getenv("LOW_MEMORY", not MULTI_DECODER) == "1"
20
 
21
  print(f"device: {device}")
22
  print(f"dtype: {dtype}")
23
- print(f"multi decoder: {MULTI_DECODER}")
24
  print(f"low memory: {LOW_MEMORY}")
25
 
 
26
  vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=dtype)
27
  pipe = DiffusionPipeline.from_pretrained(
28
  "stabilityai/stable-diffusion-xl-base-1.0",
@@ -33,6 +30,7 @@ pipe = DiffusionPipeline.from_pretrained(
33
  use_safetensors=True,
34
  vae=vae,
35
  )
 
36
  pipe = pipe.to(device)
37
 
38
 
@@ -96,7 +94,7 @@ def predict(
96
  cosine_scale_2=1,
97
  cosine_scale_3=1,
98
  sigma=0.8,
99
- multi_decoder=MULTI_DECODER,
100
  show_image=False,
101
  lowvram=LOW_MEMORY,
102
  )
@@ -127,7 +125,7 @@ with gr.Blocks(css=css) as demo:
127
  [DemoFusion](https://ruoyidu.github.io/demofusion/demofusion.html) enables higher-resolution image generation.
128
  You can upload an initial image and prompt to generate an enhanced version.
129
  [Duplicate Space](https://huggingface.co/spaces/radames/Enhance-This-DemoFusion-SDXL?duplicate=true) to avoid the queue.
130
- GPU Time Comparison: T4: - A10G: ~175s A100: RTX 4090: ~48.1s
131
 
132
  <small>
133
  <b>Notes</b> The author advises against the term "super resolution" because it's more like image-to-image generation than enhancement, but it's still a lot of fun!
 
13
  device = "cuda" if torch.cuda.is_available() else "cpu"
14
  dtype = torch.float16
15
 
16
+ LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"
 
 
 
17
 
18
  print(f"device: {device}")
19
  print(f"dtype: {dtype}")
 
20
  print(f"low memory: {LOW_MEMORY}")
21
 
22
+
23
  vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=dtype)
24
  pipe = DiffusionPipeline.from_pretrained(
25
  "stabilityai/stable-diffusion-xl-base-1.0",
 
30
  use_safetensors=True,
31
  vae=vae,
32
  )
33
+
34
  pipe = pipe.to(device)
35
 
36
 
 
94
  cosine_scale_2=1,
95
  cosine_scale_3=1,
96
  sigma=0.8,
97
+ multi_decoder=False,
98
  show_image=False,
99
  lowvram=LOW_MEMORY,
100
  )
 
125
  [DemoFusion](https://ruoyidu.github.io/demofusion/demofusion.html) enables higher-resolution image generation.
126
  You can upload an initial image and prompt to generate an enhanced version.
127
  [Duplicate Space](https://huggingface.co/spaces/radames/Enhance-This-DemoFusion-SDXL?duplicate=true) to avoid the queue.
128
+ GPU Time Comparison: T4: ~276s - A10G: ~175s A100: ~43.5s RTX 4090: ~48.1s
129
 
130
  <small>
131
  <b>Notes</b> The author advises against the term "super resolution" because it's more like image-to-image generation than enhancement, but it's still a lot of fun!