Spaces:
Runtime error
Runtime error
from datasets import load_dataset | |
import numpy as np | |
from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification | |
from datasets import load_dataset | |
from PIL import Image, ImageDraw, ImageFont | |
import torch | |
tokenizer = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base") | |
model = LayoutLMv3ForTokenClassification.from_pretrained(r"models") | |
"""device = torch.device("cuda") | |
model.cuda() | |
""" | |
labels = ['O', 'B-HEADER', 'I-HEADER', 'B-QUESTION', 'I-QUESTION', 'B-ANSWER', 'I-ANSWER'] | |
id2label = {v: k for v, k in enumerate(labels)} | |
label2color = { | |
"question": "blue", | |
"answer": "green", | |
"header": "orange", | |
"other": "violet", | |
} | |
def unnormalize_box(bbox, width, height): | |
return [ | |
width * (bbox[0] / 1000), | |
height * (bbox[1] / 1000), | |
width * (bbox[2] / 1000), | |
height * (bbox[3] / 1000), | |
] | |
def iob_to_label(label): | |
label = label[2:] | |
if not label: | |
return "other" | |
return label | |
def processor(image): | |
image = image.convert("RGB") | |
width, height = image.size | |
# encode | |
encoding = tokenizer( | |
image, truncation=True, return_offsets_mapping=True, return_tensors="pt" | |
) | |
offset_mapping = encoding.pop("offset_mapping") | |
encoding = encoding.to('cuda') | |
# forward pass | |
outputs = model(**encoding) | |
# get predictions | |
predictions = outputs.logits.argmax(-1).squeeze().tolist() | |
token_boxes = encoding.bbox.squeeze().tolist() | |
# only keep non-subword predictions | |
is_subword = np.array(offset_mapping.squeeze().tolist())[:, 0] != 0 | |
true_predictions = [ | |
id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx] | |
] | |
true_boxes = [ | |
unnormalize_box(box, width, height) | |
for idx, box in enumerate(token_boxes) | |
if not is_subword[idx] | |
] | |
draw = ImageDraw.Draw(image) | |
font = ImageFont.load_default() | |
for prediction, box in zip(true_predictions, true_boxes): | |
predicted_label = iob_to_label(prediction).lower() | |
draw.rectangle(box, outline=label2color[predicted_label]) | |
draw.text( | |
(box[0] + 10, box[1] - 10), | |
text=predicted_label, | |
fill=label2color[predicted_label], | |
font=font, | |
) | |
return image |