Sarath0x8f's picture
Update app.py
88e99f6 verified
from huggingface_hub import InferenceClient
from resume import data
import markdowm as md
import gradio as gr
import base64
import datetime
client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
# client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
# Chatbot response function with integrated system message
def respond(
message,
history: list[tuple[str, str]],
max_tokens=1024,
temperature=0.4,
top_p=0.95,
):
# System message defining assistant behavior
system_message = {
"role": "system",
"content": f"Act as SARATH and respond to the user's questions professionally. SARATH is a dedicated BTech final-year student actively seeking a job. Your name is SARATH."
f"Here is SARATH’s background:```{data}```. Only answer questions using the information provided here, and strictly use only the links found in this data. If an answer isn’t available within this information, notify the user politely and suggest they reach out via LinkedIn for further assistance."
f"Responses should be clear, professional, and strictly in English. Avoid giving random or empty responses at all times."
}
messages = [system_message]
# Adding conversation history
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
# print(f"{datetime.datetime.now()}::{{'role': 'user', 'content': val[0]}}->{{'role': 'user', 'content': val[1]}}")
# Adding the current user input
messages.append({"role": "user", "content": message})
response = ""
# Streaming the response from the API
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
print(f"{datetime.datetime.now()}::{messages[-1]['content']}->{response}\n")
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
# Encode the images
github_logo_encoded = encode_image("Images/github-logo.png")
linkedin_logo_encoded = encode_image("Images/linkedin-logo.png")
website_logo_encoded = encode_image("Images/ai-logo.png")
# Gradio interface with additional sliders for control
with gr.Blocks(theme=gr.themes.Ocean(font=[gr.themes.GoogleFont("Roboto Mono")]), css='footer {visibility: hidden}') as main:
gr.Markdown(md.title)
with gr.Tabs():
with gr.TabItem("My2.0", visible=True, interactive=True):
gr.ChatInterface(respond,
chatbot=gr.Chatbot(height=500),
examples=["Tell me about yourself",
'Can you walk me through some of your recent projects and explain the role you played in each?',
"What specific skills do you bring to the table that would benefit our company's AI/ML initiatives?",
"How do you stay updated with the latest trends and advancements in AI and Machine Learning?",
]
)
gr.Markdown(md.description)
with gr.TabItem("Resume", visible=True, interactive=True):
gr.Markdown(data)
gr.HTML(md.footer.format(github_logo_encoded, linkedin_logo_encoded, website_logo_encoded))
if __name__ == "__main__":
main.launch(share=True)