Saran03's picture
Create app.py
b27cc0d verified
raw
history blame
5.76 kB
import os
import gradio as gr
from langchain_community.vectorstores import Chroma
from langchain_community.chat_models import ChatOllama
from langchain_community.embeddings import FastEmbedEmbeddings
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema.output_parser import StrOutputParser
from langchain.prompts import PromptTemplate
from langchain.schema.runnable import RunnablePassthrough
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
# Initialize embeddings model and vector store
embeddings_model = FastEmbedEmbeddings(model_name="BAAI/bge-small-en-v1.5")
vector_store = None
# Chat history (initialize with an empty list)
chat_history = []
# Store previous questions and their embeddings
question_embeddings = []
# Prompt templates for LLM
prompt_with_context_template = """Analyze the following context and answer the question based only on the following context:
{context}
Question: {question}
"""
prompt_without_context_template = """Provide an answer to the question based on general knowledge.
Question: {question}
"""
prompt_with_context = PromptTemplate.from_template(prompt_with_context_template)
prompt_without_context = PromptTemplate.from_template(prompt_without_context_template)
# Function to load, split PDFs, and store in vector store
def process_documents(uploaded_files):
global vector_store
all_docs = []
for uploaded_file in uploaded_files:
# Load each PDF using PyPDFLoader
loader = PyPDFLoader(uploaded_file)
pages = loader.load_and_split()
# Split documents into chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
docs = text_splitter.split_documents(pages)
all_docs.extend(docs)
# Create or update the vector store
if vector_store is None:
vector_store = Chroma.from_documents(all_docs, embeddings_model)
else:
vector_store.add_documents(all_docs)
return f"Uploaded {len(uploaded_files)} files and indexed {len(all_docs)} chunks."
# Function to handle question answering with RAG and maintain chat history
def answer_question(question):
global vector_store, chat_history, question_embeddings
# Set up retriever and LLM
retriever = vector_store.as_retriever() if vector_store else None
llm = ChatOllama(model="llama3:latest", verbose=True)
if retriever:
# Define the RAG chain with document context
chain = (
{"context": retriever, "question": RunnablePassthrough()}
| prompt_with_context
| llm
| StrOutputParser()
)
# Process user question through RAG chain with context
answer = chain.invoke(question).capitalize()
else:
# Define the RAG chain without document context
chain = (
{"question": RunnablePassthrough()}
| prompt_without_context
| llm
| StrOutputParser()
)
# Process user question through RAG chain without context
answer = chain.invoke(question).capitalize()
# Append the question and answer to the chat history
chat_history.append((f"Q: {question}", f"A: {answer}"))
# Encode the current question and store its embedding
current_question_embedding = embeddings_model.embed_query(question)
question_embeddings.append(current_question_embedding)
# Find related questions
related_question = "No related questions found."
if question_embeddings:
# Compute similarity between current question and previous questions
similarities = cosine_similarity([current_question_embedding], question_embeddings)
related_idx = np.argmax(similarities)
if similarities[0][related_idx] > 0.5:
related_question = chat_history[related_idx][0]
# Format the chat history for display
chat_display = "\n\n".join([f"{q}\n{a}" for q, a in chat_history])
return answer, chat_display, related_question
# Function to clear the vector store
def clear_documents():
global vector_store
if vector_store is not None:
vector_store.delete_collection()
vector_store = None
return "Document collection cleared.", chat_history, ""
# Gradio interface
with gr.Blocks() as demo:
# Main layout with two columns
with gr.Row():
# Left column for file upload and question input
with gr.Column(scale=1):
file_uploader = gr.File(label="Upload PDFs", file_types=[".pdf"], file_count="multiple", type="filepath")
upload_button = gr.Button("Upload and Process")
clear_button = gr.Button("Clear Document Collection")
status_display = gr.Textbox(label="Status", lines=2)
question_input = gr.Textbox(label="Ask a question about the documents")
ask_button = gr.Button("Ask")
# Center column for answer and chat history
with gr.Column(scale=2):
answer_display = gr.Textbox(label="Answer", lines=4)
chat_history_display = gr.Textbox(label="Chat History", lines=10, interactive=False)
related_question_display = gr.Textbox(label="Related Question", lines=4, interactive=False)
# Link buttons to functions
upload_button.click(process_documents, inputs=[file_uploader], outputs=[status_display])
ask_button.click(answer_question, inputs=[question_input], outputs=[answer_display, chat_history_display, related_question_display])
clear_button.click(clear_documents, outputs=[status_display, chat_history_display, related_question_display])
# Launch the app
demo.launch(inline=False)