Spaces:
Running
Running
# Copyright (c) 2018-present, Facebook, Inc. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# | |
import time | |
import cv2 | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from matplotlib.animation import FuncAnimation, writers | |
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas | |
from mpl_toolkits.mplot3d import Axes3D | |
from tqdm import tqdm | |
from common.utils import read_video | |
def ckpt_time(ckpt=None, display=0, desc=''): | |
if not ckpt: | |
return time.time() | |
else: | |
if display: | |
print(desc + ' consume time {:0.4f}'.format(time.time() - float(ckpt))) | |
return time.time() - float(ckpt), time.time() | |
def set_equal_aspect(ax, data): | |
""" | |
Create white cubic bounding box to make sure that 3d axis is in equal aspect. | |
:param ax: 3D axis | |
:param data: shape of(frames, 3), generated from BVH using convert_bvh2dataset.py | |
""" | |
X, Y, Z = data[..., 0], data[..., 1], data[..., 2] | |
# Create cubic bounding box to simulate equal aspect ratio | |
max_range = np.array([X.max() - X.min(), Y.max() - Y.min(), Z.max() - Z.min()]).max() | |
Xb = 0.5 * max_range * np.mgrid[-1:2:2, -1:2:2, -1:2:2][0].flatten() + 0.5 * (X.max() + X.min()) | |
Yb = 0.5 * max_range * np.mgrid[-1:2:2, -1:2:2, -1:2:2][1].flatten() + 0.5 * (Y.max() + Y.min()) | |
Zb = 0.5 * max_range * np.mgrid[-1:2:2, -1:2:2, -1:2:2][2].flatten() + 0.5 * (Z.max() + Z.min()) | |
for xb, yb, zb in zip(Xb, Yb, Zb): | |
ax.plot([xb], [yb], [zb], 'w') | |
def downsample_tensor(X, factor): | |
length = X.shape[0] // factor * factor | |
return np.mean(X[:length].reshape(-1, factor, *X.shape[1:]), axis=1) | |
def render_animation(keypoints, poses, skeleton, fps, bitrate, azim, output, progress, viewport, | |
limit=-1, downsample=1, size=6, input_video_path=None, input_video_skip=0): | |
""" | |
TODO | |
Render an animation. The supported output modes are: | |
-- 'interactive': display an interactive figure | |
(also works on notebooks if associated with %matplotlib inline) | |
-- 'html': render the animation as HTML5 video. Can be displayed in a notebook using HTML(...). | |
-- 'filename.mp4': render and export the animation as an h264 video (requires ffmpeg). | |
-- 'filename.gif': render and export the animation a gif file (requires imagemagick). | |
""" | |
plt.ioff() | |
fig = plt.figure(figsize=(size * (1 + len(poses)), size)) | |
ax_in = fig.add_subplot(1, 1 + len(poses), 1) | |
ax_in.get_xaxis().set_visible(False) | |
ax_in.get_yaxis().set_visible(False) | |
ax_in.set_axis_off() | |
ax_in.set_title('Input') | |
# prevent wired error | |
_ = Axes3D.__class__.__name__ | |
ax_3d = [] | |
lines_3d = [] | |
trajectories = [] | |
radius = 1.7 | |
for index, (title, data) in enumerate(poses.items()): | |
ax = fig.add_subplot(1, 1 + len(poses), index + 2, projection='3d') | |
ax.view_init(elev=15., azim=azim) | |
ax.set_xlim3d([-radius / 2, radius / 2]) | |
ax.set_zlim3d([0, radius]) | |
ax.set_ylim3d([-radius / 2, radius / 2]) | |
# ax.set_aspect('equal') | |
ax.set_xticklabels([]) | |
ax.set_yticklabels([]) | |
ax.set_zticklabels([]) | |
ax.dist = 12.5 | |
ax.set_title(title) # , pad=35 | |
ax_3d.append(ax) | |
lines_3d.append([]) | |
trajectories.append(data[:, 0, [0, 1]]) | |
poses = list(poses.values()) | |
# Decode video | |
if input_video_path is None: | |
# Black background | |
all_frames = np.zeros((keypoints.shape[0], viewport[1], viewport[0]), dtype='uint8') | |
else: | |
# Load video using ffmpeg | |
all_frames = [] | |
for f in read_video(input_video_path, fps=None, skip=input_video_skip): | |
all_frames.append(f) | |
effective_length = min(keypoints.shape[0], len(all_frames)) | |
all_frames = all_frames[:effective_length] | |
if downsample > 1: | |
keypoints = downsample_tensor(keypoints, downsample) | |
all_frames = downsample_tensor(np.array(all_frames), downsample).astype('uint8') | |
for idx in range(len(poses)): | |
poses[idx] = downsample_tensor(poses[idx], downsample) | |
trajectories[idx] = downsample_tensor(trajectories[idx], downsample) | |
fps /= downsample | |
initialized = False | |
image = None | |
lines = [] | |
points = None | |
if limit < 1: | |
limit = len(all_frames) | |
else: | |
limit = min(limit, len(all_frames)) | |
parents = skeleton.parents() | |
pbar = tqdm(total=limit) | |
# probar = progress.tqdm(total=limit, desc="Step 3: 3D Rendering") | |
def update_video(i): | |
nonlocal initialized, image, lines, points | |
for n, ax in enumerate(ax_3d): | |
ax.set_xlim3d([-radius / 2 + trajectories[n][i, 0], radius / 2 + trajectories[n][i, 0]]) | |
ax.set_ylim3d([-radius / 2 + trajectories[n][i, 1], radius / 2 + trajectories[n][i, 1]]) | |
# Update 2D poses | |
if not initialized: | |
image = ax_in.imshow(all_frames[i], aspect='equal') | |
for j, j_parent in enumerate(parents): | |
if j_parent == -1: | |
continue | |
# if len(parents) == keypoints.shape[1] and 1 == 2: | |
# # Draw skeleton only if keypoints match (otherwise we don't have the parents definition) | |
# lines.append(ax_in.plot([keypoints[i, j, 0], keypoints[i, j_parent, 0]], | |
# [keypoints[i, j, 1], keypoints[i, j_parent, 1]], color='pink')) | |
col = 'red' if j in skeleton.joints_right() else 'black' | |
for n, ax in enumerate(ax_3d): | |
pos = poses[n][i] | |
lines_3d[n].append(ax.plot([pos[j, 0], pos[j_parent, 0]], | |
[pos[j, 1], pos[j_parent, 1]], | |
[pos[j, 2], pos[j_parent, 2]], zdir='z', c=col)) | |
points = ax_in.scatter(*keypoints[i].T, 5, color='red', edgecolors='white', zorder=10) | |
initialized = True | |
else: | |
image.set_data(all_frames[i]) | |
for j, j_parent in enumerate(parents): | |
if j_parent == -1: | |
continue | |
# if len(parents) == keypoints.shape[1] and 1 == 2: | |
# lines[j - 1][0].set_data([keypoints[i, j, 0], keypoints[i, j_parent, 0]], | |
# [keypoints[i, j, 1], keypoints[i, j_parent, 1]]) | |
for n, ax in enumerate(ax_3d): | |
pos = poses[n][i] | |
lines_3d[n][j - 1][0].set_xdata(np.array([pos[j, 0], pos[j_parent, 0]])) # Hotfix matplotlib's bug. https://github.com/matplotlib/matplotlib/pull/20555 | |
lines_3d[n][j - 1][0].set_ydata([pos[j, 1], pos[j_parent, 1]]) | |
lines_3d[n][j - 1][0].set_3d_properties([pos[j, 2], pos[j_parent, 2]], zdir='z') | |
points.set_offsets(keypoints[i]) | |
pbar.update() | |
# probar.update() | |
fig.tight_layout() | |
anim = FuncAnimation(fig, update_video, frames=limit, interval=1000.0 / fps, repeat=False) | |
if output.endswith('.mp4'): | |
Writer = writers['ffmpeg'] | |
writer = Writer(fps=fps, metadata={}, bitrate=bitrate) | |
anim.save(output, writer=writer) | |
elif output.endswith('.gif'): | |
anim.save(output, dpi=60, writer='imagemagick') | |
else: | |
raise ValueError('Unsupported output format (only .mp4 and .gif are supported)') | |
pbar.close() | |
plt.close() | |
def render_animation_test(keypoints, poses, skeleton, fps, bitrate, azim, output, viewport, limit=-1, downsample=1, size=6, input_video_frame=None, | |
input_video_skip=0, num=None): | |
t0 = ckpt_time() | |
fig = plt.figure(figsize=(12, 6)) | |
canvas = FigureCanvas(fig) | |
fig.add_subplot(121) | |
plt.imshow(input_video_frame) | |
# 3D | |
ax = fig.add_subplot(122, projection='3d') | |
ax.view_init(elev=15., azim=azim) | |
# set 长度范围 | |
radius = 1.7 | |
ax.set_xlim3d([-radius / 2, radius / 2]) | |
ax.set_zlim3d([0, radius]) | |
ax.set_ylim3d([-radius / 2, radius / 2]) | |
ax.set_aspect('equal') | |
# 坐标轴刻度 | |
ax.set_xticklabels([]) | |
ax.set_yticklabels([]) | |
ax.set_zticklabels([]) | |
ax.dist = 7.5 | |
# lxy add | |
ax.set_xlabel('X Label') | |
ax.set_ylabel('Y Label') | |
ax.set_zlabel('Z Label') | |
# array([-1, 0, 1, 2, 0, 4, 5, 0, 7, 8, 9, 8, 11, 12, 8, 14, 15]) | |
parents = skeleton.parents() | |
pos = poses['Reconstruction'][-1] | |
_, t1 = ckpt_time(t0, desc='1 ') | |
for j, j_parent in enumerate(parents): | |
if j_parent == -1: | |
continue | |
if len(parents) == keypoints.shape[1]: | |
color_pink = 'pink' | |
if j == 1 or j == 2: | |
color_pink = 'black' | |
col = 'red' if j in skeleton.joints_right() else 'black' | |
# 画图3D | |
ax.plot([pos[j, 0], pos[j_parent, 0]], | |
[pos[j, 1], pos[j_parent, 1]], | |
[pos[j, 2], pos[j_parent, 2]], zdir='z', c=col) | |
# plt.savefig('test/3Dimage_{}.png'.format(1000+num)) | |
width, height = fig.get_size_inches() * fig.get_dpi() | |
_, t2 = ckpt_time(t1, desc='2 ') | |
canvas.draw() # draw the canvas, cache the renderer | |
image = np.fromstring(canvas.tostring_rgb(), dtype='uint8').reshape(int(height), int(width), 3) | |
cv2.imshow('im', image) | |
cv2.waitKey(5) | |
_, t3 = ckpt_time(t2, desc='3 ') | |
return image | |