Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.autograd import Variable | |
import numpy as np | |
import math | |
import os | |
import copy | |
def clones(module, N): | |
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)]) | |
class Encoder(nn.Module): | |
def __init__(self, layer, N, length, d_model): | |
super(Encoder, self).__init__() | |
self.layers = layer | |
self.norm = LayerNorm(d_model) | |
self.pos_embedding_1 = nn.Parameter(torch.randn(1, length, d_model)) | |
self.pos_embedding_2 = nn.Parameter(torch.randn(1, length, d_model)) | |
self.pos_embedding_3 = nn.Parameter(torch.randn(1, length, d_model)) | |
def forward(self, x, mask): | |
for i, layer in enumerate(self.layers): | |
if i == 0: | |
x += self.pos_embedding_1[:, :x.shape[1]] | |
elif i == 1: | |
x += self.pos_embedding_2[:, :x.shape[1]] | |
elif i == 2: | |
x += self.pos_embedding_3[:, :x.shape[1]] | |
x = layer(x, mask, i) | |
return x | |
class LayerNorm(nn.Module): | |
def __init__(self, features, eps=1e-6): | |
super(LayerNorm, self).__init__() | |
self.a_2 = nn.Parameter(torch.ones(features)) | |
self.b_2 = nn.Parameter(torch.zeros(features)) | |
self.eps = eps | |
def forward(self, x): | |
mean = x.mean(-1, keepdim=True) | |
std = x.std(-1, keepdim=True) | |
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2 | |
def attention(query, key, value, mask=None, dropout=None): | |
d_k = query.size(-1) | |
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k) | |
if mask is not None: | |
scores = scores.masked_fill(mask == 0, -1e9) | |
p_attn = F.softmax(scores, dim=-1) | |
if dropout is not None: | |
p_attn = dropout(p_attn) | |
return torch.matmul(p_attn, value), p_attn | |
class SublayerConnection(nn.Module): | |
def __init__(self, size, dropout, stride_num, i): | |
super(SublayerConnection, self).__init__() | |
self.norm = LayerNorm(size) | |
self.dropout = nn.Dropout(dropout) | |
self.pooling = nn.MaxPool1d(1, stride_num[i]) | |
def forward(self, x, sublayer, i=-1, stride_num=-1): | |
if i != -1: | |
if stride_num[i] != 1: | |
res = self.pooling(x.permute(0, 2, 1)) | |
res = res.permute(0, 2, 1) | |
return res + self.dropout(sublayer(self.norm(x))) | |
else: | |
return x + self.dropout(sublayer(self.norm(x))) | |
else: | |
return x + self.dropout(sublayer(self.norm(x))) | |
class EncoderLayer(nn.Module): | |
def __init__(self, size, self_attn, feed_forward, dropout, stride_num, i): | |
super(EncoderLayer, self).__init__() | |
self.self_attn = self_attn | |
self.feed_forward = feed_forward | |
self.stride_num = stride_num | |
self.sublayer = clones(SublayerConnection(size, dropout, stride_num, i), 2) | |
self.size = size | |
def forward(self, x, mask, i): | |
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask)) | |
x = self.sublayer[1](x, self.feed_forward, i, self.stride_num) | |
return x | |
class MultiHeadedAttention(nn.Module): | |
def __init__(self, h, d_model, dropout=0.1): | |
super(MultiHeadedAttention, self).__init__() | |
assert d_model % h == 0 | |
self.d_k = d_model // h | |
self.h = h | |
self.linears = clones(nn.Linear(d_model, d_model), 4) | |
self.attn = None | |
self.dropout = nn.Dropout(p=dropout) | |
def forward(self, query, key, value, mask=None): | |
if mask is not None: | |
mask = mask.unsqueeze(1) | |
nbatches = query.size(0) | |
query, key, value = [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2) | |
for l, x in zip(self.linears, (query, key, value))] | |
x, self.attn = attention(query, key, value, mask=mask, | |
dropout=self.dropout) | |
x = x.transpose(1, 2).contiguous().view(nbatches, -1, self.h * self.d_k) | |
return self.linears[-1](x) | |
class PositionwiseFeedForward(nn.Module): | |
def __init__(self, d_model, d_ff, dropout=0.1, number = -1, stride_num=-1): | |
super(PositionwiseFeedForward, self).__init__() | |
self.w_1 = nn.Conv1d(d_model, d_ff, kernel_size=1, stride=1) | |
self.w_2 = nn.Conv1d(d_ff, d_model, kernel_size=3, stride=stride_num[number], padding = 1) | |
self.gelu = nn.ReLU() | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
x = x.permute(0, 2, 1) | |
x = self.w_2(self.dropout(self.gelu(self.w_1(x)))) | |
x = x.permute(0, 2, 1) | |
return x | |
class Transformer(nn.Module): | |
def __init__(self, n_layers=3, d_model=256, d_ff=512, h=8, length=27, stride_num=None, dropout=0.1): | |
super(Transformer, self).__init__() | |
self.length = length | |
self.stride_num = stride_num | |
self.model = self.make_model(N=n_layers, d_model=d_model, d_ff=d_ff, h=h, dropout=dropout, length = self.length) | |
def forward(self, x, mask=None): | |
x = self.model(x, mask) | |
return x | |
def make_model(self, N=3, d_model=256, d_ff=512, h=8, dropout=0.1, length=27): | |
c = copy.deepcopy | |
attn = MultiHeadedAttention(h, d_model) | |
model_EncoderLayer = [] | |
for i in range(N): | |
ff = PositionwiseFeedForward(d_model, d_ff, dropout, i, self.stride_num) | |
model_EncoderLayer.append(EncoderLayer(d_model, c(attn), c(ff), dropout, self.stride_num, i)) | |
model_EncoderLayer = nn.ModuleList(model_EncoderLayer) | |
model = Encoder(model_EncoderLayer, N, length, d_model) | |
return model | |