NER_RC / src /scripts /functionsrc.py
SantiagoMoreno-Col's picture
Add files to repo
42d6a0f
raw
history blame
24.6 kB
# -*- coding: utf-8 -*-
"""
Created on Mon May 1 20:54:14 2023
@author: sanmo
"""
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, random_split
import pandas as pd
import json
import os
import gc
from distutils.dir_util import copy_tree
import shutil
import argparse
import flair
from flair.embeddings import TokenEmbeddings, WordEmbeddings, StackedEmbeddings, TransformerWordEmbeddings
from torch import nn, tanh, sigmoid, relu, FloatTensor, rand, stack, optim, cuda, softmax, save, device, tensor, int64, no_grad, concat
from flair.data import Sentence
default_path = 0
entities = 0
tagger_document = 0
embeddings = 0
json_data = 0
train_loader = 0
val_loader = 0
test_loader = 0
cnn = 0
optimizer = 0
criterion = 0
device = 0
test_sentences = 0
best_valid_loss = np.inf
def check_create(path):
import os
if not (os.path.isdir(path)):
os.makedirs(path)
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'True','true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'False', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
class MyDataset(Dataset):
def __init__(self, len_c1=7, len_c2=5, len_c3=11):
global json_data
def create_vector(c1,sentence):
#print("Hola mundo")
if len(c1): c1 = torch.cat([c1,sentence], dim=0)
else: c1 = sentence
return c1
def fix_tensor(tensor, size):
while tensor.shape[2] < size:
tensor = torch.cat([tensor,torch.zeros(1,1,1,1024)], dim=2)
tensor = tensor[:,:,:size,:]
return tensor
data = []
self.targets = []
self.c1=[]
self.h1=[]
self.c2=[]
self.h2=[]
self.c3=[]
tensor_temp = torch.Tensor(json_data['flat_emb'])
data = tensor_temp.reshape((tensor_temp.shape[0],1,-1,1024))
self.targets = create_vector(self.targets,torch.Tensor(json_data['relation']))
for n_sen in range(tensor_temp.shape[0]):
tensor_temp = data[n_sen,0,:json_data['h_pos'][n_sen][0],:].reshape((1, 1,-1,1024))
self.c1 = create_vector(self.c1,fix_tensor(tensor_temp, len_c1))
tensor_temp = data[n_sen,0,json_data['h_pos'][n_sen][0]:json_data['h_pos'][n_sen][-1]+1,:].mean(dim=0).reshape((1,1024))
self.h1 = create_vector(self.h1,tensor_temp)
tensor_temp = data[n_sen,0,json_data['h_pos'][n_sen][-1]+1:json_data['t_pos'][n_sen][0],:].reshape((1,1,-1,1024))
self.c2 = create_vector(self.c2,fix_tensor(tensor_temp, len_c2))
tensor_temp = data[n_sen,0,json_data['t_pos'][n_sen][0]:json_data['t_pos'][n_sen][-1]+1,:].mean(dim=0).reshape((1,1024))
self.h2 = create_vector(self.h2,tensor_temp)
tensor_temp = data[n_sen,0,json_data['t_pos'][n_sen][-1]+1:,:].reshape((1, 1,-1,1024))
self.c3 = create_vector(self.c3,fix_tensor(tensor_temp, len_c3))
del data
del tensor_temp
del json_data
gc.collect()
self.targets = self.targets.to(torch.int64)
#print('Dataset class')
def __len__(self):
return len(self.targets)
def __getitem__(self, index):
c1x = self.c1[index]
h1x = self.h1[index]
c2x = self.c2[index]
h2x = self.h2[index]
c3x = self.c3[index]
y = self.targets[index]
return c1x,h1x,c2x,h2x,c3x, y
def update_step(c1, h1,c2,h2,c3, label):
global cnn
global optimizer
global criterion
prediction = cnn(c1, h1,c2,h2,c3)
optimizer.zero_grad()
loss = criterion(prediction, label)
loss.backward()
optimizer.step()
acc = (nn.Softmax(dim=1)(prediction).detach().argmax(dim=1) == label).type(torch.float).sum().item()
#print(acc)
return loss.item(), acc
def evaluate_step(c1, h1,c2,h2,c3, label):
global cnn
global optimizer
global criterion
prediction = cnn(c1, h1,c2,h2,c3)
loss = criterion(prediction, label)
acc = (nn.Softmax(dim=1)(prediction).detach().argmax(dim=1) == label).type(torch.float).sum().item()
return loss.item(), acc
def train_one_epoch(epoch, name, rel2id_file):
global train_loader
global val_loader
global device
global best_valid_loss
global optimizer
global cnn
global default_path
if (device == torch.device('cuda:0')): cnn.cuda()
train_loss, valid_loss, acc_train, acc_valid = 0.0, 0.0, 0.0, 0.0
for batch_idx, (c1, h1,c2,h2,c3, targets) in enumerate(train_loader):
train_loss_temp, acc_train_temp = update_step(c1.to(device), h1.to(device),c2.to(device),h2.to(device),c3.to(device), targets.to(device))
train_loss += train_loss_temp
acc_train += acc_train_temp
for batch_idx, (c1, h1,c2,h2,c3, targets) in enumerate(val_loader):
valid_loss_temp, acc_valid_temp = evaluate_step(c1.to(device), h1.to(device),c2.to(device),h2.to(device),c3.to(device), targets.to(device))
valid_loss += valid_loss_temp
acc_valid += acc_valid_temp
# Guardar modelo si es el mejor hasta ahora
if epoch % 10 == 0:
# path_save = os.path.normpath(default_path +'/../../models/RC/{}/best_model.pt'.format(name))
# path_save = path_save.replace('\\', '/')
# print(os.path.abspath(__file__))
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save({'epoca': epoch,
'model_state_dict': cnn.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': valid_loss},
'../../models/RC/{}/best_model.pt'.format(name))
#path_files = default_path + '/../../data/RC/'
a=0
#rel2id_file = path_files + 'rel2id.json'
return train_loss/len(train_loader.dataset), valid_loss/len(val_loader.dataset), acc_train/len(train_loader.dataset), acc_valid/len(val_loader.dataset)
def FocalLoss(input, target, gamma=0, alpha=None, size_average=True):
from torch.autograd import Variable
if input.dim()>2:
input = input.view(input.size(0),input.size(1),-1) # N,C,H,W => N,C,H*W
input = input.transpose(1,2) # N,C,H*W => N,H*W,C
input = input.contiguous().view(-1,input.size(2)) # N,H*W,C => N*H*W,C
target = target.view(-1,1)
logpt = nn.functional.log_softmax(input)
logpt = logpt.gather(1,target)
logpt = logpt.view(-1)
pt = Variable(logpt.data.exp())
if alpha is not None:
if alpha.type()!=input.data.type():
alpha = alpha.type_as(input.data)
at = alpha.gather(0,target.data.view(-1))
logpt = logpt * Variable(at)
loss = -1 * (1-pt)**gamma * logpt
if size_average: return loss.mean()
else: return loss.sum()
class EarlyStopping:
def __init__(self, patience=5, min_delta=0):
self.patience = patience
self.min_delta = min_delta
self.counter = 0
self.min_validation_loss = np.inf
self.early_stop = False
def __call__(self, validation_loss):
if validation_loss < self.min_validation_loss:
self.min_validation_loss = validation_loss
self.counter = 0
self.early_stop = False
elif validation_loss > (self.min_validation_loss + self.min_delta):
print('Less')
self.counter += 1
if self.counter >= self.patience:
self.early_stop = True
def SoftmaxModified(x):
input_softmax = x.transpose(0,1)
function_activation = nn.Softmax(dim=1)
output = function_activation(input_softmax)
output = output.transpose(0,1)
return output
class MultiModalGMUAdapted(nn.Module):
def __init__(self, input_size_array, hidden_size, dropoutProbability):
"""Initialize params."""
super(MultiModalGMUAdapted, self).__init__()
self.input_size_array = input_size_array
self.hidden_size = hidden_size
self.dropout = nn.Dropout(dropoutProbability)
self.h_1_layer = nn.Linear(input_size_array[0], hidden_size, bias=False)
self.h_2_layer = nn.Linear(input_size_array[1], hidden_size, bias=False)
self.h_3_layer = nn.Linear(input_size_array[2], hidden_size, bias=False)
self.h_4_layer = nn.Linear(input_size_array[3], hidden_size, bias=False)
self.h_5_layer = nn.Linear(input_size_array[4], hidden_size, bias=False)
self.z_1_layer = nn.Linear(input_size_array[0], hidden_size, bias=False)
self.z_2_layer = nn.Linear(input_size_array[1], hidden_size, bias=False)
self.z_3_layer = nn.Linear(input_size_array[2], hidden_size, bias=False)
self.z_4_layer = nn.Linear(input_size_array[3], hidden_size, bias=False)
self.z_5_layer = nn.Linear(input_size_array[4], hidden_size, bias=False)
#self.z_weights = [nn.Linear(input_size_array[m], hidden_size, bias=False) for m in range(modalities_number)]
#self.input_weights = [nn.Linear(size, hidden_size, bias=False) for size in input_size_array]
def forward(self, inputModalities):
"""Propogate input through the network."""
# h_modalities = [self.dropout(self.input_weights[i](i_mod)) for i,i_mod in enumerate(inputModalities)]
# h_modalities = [tanh(h) for h in h_modalities]
h1 = tanh(self.dropout(self.h_1_layer(inputModalities[0])))
h2 = tanh(self.dropout(self.h_2_layer(inputModalities[1])))
h3 = tanh(self.dropout(self.h_3_layer(inputModalities[2])))
h4 = tanh(self.dropout(self.h_4_layer(inputModalities[3])))
h5 = tanh(self.dropout(self.h_5_layer(inputModalities[4])))
z1 = self.dropout(self.z_1_layer(inputModalities[0]))
z2 = self.dropout(self.z_2_layer(inputModalities[1]))
z3 = self.dropout(self.z_3_layer(inputModalities[2]))
z4 = self.dropout(self.z_4_layer(inputModalities[3]))
z5 = self.dropout(self.z_5_layer(inputModalities[4]))
#z_modalities = [self.dropout(self.z_weights[i](i_mod)) for i,i_mod in enumerate(inputModalities)]
z_modalities = stack([z1, z2, z3, z4, z5])
z_normalized = SoftmaxModified(z_modalities)
final = z_normalized[0] * h1 + z_normalized[1] * h2 + z_normalized[2] * h3 + z_normalized[3] * h4 + z_normalized[4] * h5
return final
class MyCNN(nn.Module):
def __init__(self, num_classes=10, len_c1=7, len_c2=5, len_c3=11):
super(MyCNN, self).__init__()
shape1 = (((len_c1-2)))#-2)#//2)-2)//2)
shape2 = (((len_c2-2)))#-2)#//2)-2)//2)
shape3 = (((len_c3-2)))#-2)#//2)-2)//2)
# Define convolutional layers
self.conv_layers1 = nn.Sequential(
nn.Conv2d(in_channels=1, out_channels=1, kernel_size=(3,1)),
nn.ReLU(),
nn.MaxPool2d(kernel_size=(shape1,1)),
)
self.conv_layers2 = nn.Sequential(
nn.Conv2d(in_channels=1, out_channels=1, kernel_size=(3,1)),
nn.ReLU(),
nn.MaxPool2d(kernel_size=(shape2,1)),
)
self.conv_layers3 = nn.Sequential(
nn.Conv2d(in_channels=1, out_channels=1, kernel_size=(3,1)),
nn.ReLU(),
nn.MaxPool2d(kernel_size=(shape3,1)),
)
self.multi_gmu = MultiModalGMUAdapted([1024,1024,1024,1024,1024], 1024, 0.5)
self.fc_simple_layers_multi = nn.Sequential(
nn.Linear(1024 , 256),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(256, num_classes)
)
def forward(self, c1, h1,c2,h2,c3):
# Pass inputs through convolutional layers
c1 = self.conv_layers1(c1)
c2 = self.conv_layers2(c2)
c3 = self.conv_layers3(c3)
#print(c1.shape)
h1 = tanh(h1)
h2 = tanh(h2)
#print(c1.shape)
c1 = torch.flatten(c1, start_dim=1)
c2 = torch.flatten(c2, start_dim=1)
c3 = torch.flatten(c3, start_dim=1)
#print(c1.shape)
# Multi GMU
mgmu_out = self.multi_gmu([c1,h1,c2,h2,c3])
x = self.fc_simple_layers_multi(mgmu_out)
# Return final output
return x
def define_model():
global cnn
global optimizer
global criterion
cnn = MyCNN()
optimizer = torch.optim.Adam(cnn.parameters(), lr=0.001)
criterion = lambda pred,tar: FocalLoss(input=pred,target=tar,gamma=0.7)
def train_model(name, epocs, rel2id_path):
max_epochs, best_valid_loss = epocs, np.inf
running_loss = np.zeros(shape=(max_epochs, 4))
early_stopping = EarlyStopping(patience=10, min_delta=0.01)
for epoch in range(max_epochs):
running_loss[epoch] = train_one_epoch(epoch, name, rel2id_path)
early_stopping(running_loss[epoch, 1])
print(f"Epoch {epoch} \t Train_loss = {running_loss[epoch, 0]:.4f} \t Valid_loss = {running_loss[epoch, 1]:.4f} \n\t\t\t Train_acc = {running_loss[epoch, 2]:.4f} \t Valid_acc = {running_loss[epoch, 3]:.4f}")
if early_stopping.early_stop:
print("We are at epoch:", epoch)
break
def usage_cuda_rc(cuda):
global device
if cuda:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
flair.device = device
if flair.device == torch.device('cpu'): return 'Error handling GPU, CPU will be used'
elif flair.device == torch.device('cuda:0'): return 'GPU detected, GPU will be used'
else:
device = torch.device('cpu')
flair.device = device
return 'CPU will be used'
def create_embbedings():
global embeddings
if (not embeddings):
embeddings = TransformerWordEmbeddings(
model='xlm-roberta-large',
layers="-1",
subtoken_pooling="first",
fine_tune=True,
use_context=True,
)
def prepare_data(rel2id_path, path_data):
create_embbedings()
global embeddings
global json_data
#Embbeb data
global default_path
#path_files
#rel2id_file = path_files + 'rel2id.json'
#shutil.copy(rel2id_path, rel2id_file)
with open(rel2id_path, mode='r') as f:
rel2id = json.load(f)
#path_data = path_files+"train.txt"
#Json to save the data
json_data = {'flat_emb':[], 'relation':[], 'h_pos':[], 't_pos':[]}
PADDING = np.zeros(1024)
doc=0
with open(path_data, mode='r', encoding='utf-8') as f:
sentence_temp = []
h_pos = []
t_pos = []
current_ent=''
cont=0
for n,line in enumerate(f.readlines()):
if line != '\n':
sentence_temp.append(line.split('\t')[0])
if line.split('\t')[1] != 'O':
if current_ent == '':
h_pos.append(cont)
current_ent = line.split('\t')[1]
elif line.split('\t')[1] == current_ent:
h_pos.append(cont)
else:
t_pos.append(cont)
if line.split('\t')[2].replace('\n','') != '-' : relation = line.split('\t')[2].replace('\n','')
cont += 1
else:
#Embbedding sentence
sentence = Sentence(sentence_temp)
embeddings.embed(sentence)
sentence_emb_flatten = []
for tk in sentence:
#flatten_embeddings
if len(sentence_emb_flatten): sentence_emb_flatten = np.hstack((sentence_emb_flatten,
tk.embedding.detach().to('cpu').numpy()))
else: sentence_emb_flatten = tk.embedding.detach().to('cpu').numpy()
number_padding = 100 - len(sentence)
if number_padding > 0:
for pd in range(number_padding):
sentence_emb_flatten = np.hstack((sentence_emb_flatten,
PADDING))
#Save embeddings information
json_data['flat_emb'].append(list(sentence_emb_flatten))
json_data['h_pos'].append(h_pos)
json_data['t_pos'].append(t_pos)
json_data['relation'].append(rel2id[relation])
sentence_temp = []
h_pos = []
t_pos = []
current_ent=''
cont=0
dataset = MyDataset()
train_set_size = int(len(dataset) * 0.9)
valid_set_size = len(dataset) - train_set_size
train_dataset, val_dataset = random_split(dataset, [train_set_size, valid_set_size ])
del dataset
global train_loader
global val_loader
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=64, shuffle=True)
def prepare_data_test(name, path_data):
create_embbedings()
global embeddings
global json_data
global test_sentences
global entities
#Embbeb data
global default_path
test_sentences = []
entities = []
#path_files = default_path + '/../../data/RC/'
# path_model = default_path + '/../../models/RC/{}/'.format(name)
#path_data = path_files+"test.txt"
#Json to save the data
json_data = {'flat_emb':[], 'relation':[], 'h_pos':[], 't_pos':[]}
PADDING = np.zeros(1024)
doc=0
with open(path_data, mode='r', encoding='utf-8') as f:
sentence_temp = []
entities_temp = []
h_pos = []
t_pos = []
current_ent=''
cont=0
for n,line in enumerate(f.readlines()):
#print(line)
if line != '\n':
sentence_temp.append(line.split('\t')[0])
entities_temp.append(line.split('\t')[1])
if line.split('\t')[1] != 'O':
if current_ent == '':
h_pos.append(cont)
current_ent = line.split('\t')[1]
elif line.split('\t')[1] == current_ent:
h_pos.append(cont)
else:
t_pos.append(cont)
# if line.split('\t')[2].replace('\n','') != '-' : relation = '-'
cont += 1
else:
#Embbedding sentence
sentence = Sentence(sentence_temp)
test_sentences.append(sentence_temp)
entities.append(entities_temp)
#print('mid while')
embeddings.embed(sentence)
sentence_emb_flatten = []
for tk in sentence:
#flatten_embeddings
if len(sentence_emb_flatten): sentence_emb_flatten = np.hstack((sentence_emb_flatten,
tk.embedding.detach().to('cpu').numpy()))
else: sentence_emb_flatten = tk.embedding.detach().to('cpu').numpy()
number_padding = 100 - len(sentence)
if number_padding > 0:
for pd in range(number_padding):
sentence_emb_flatten = np.hstack((sentence_emb_flatten,
PADDING))
#Save embeddings information
json_data['flat_emb'].append(list(sentence_emb_flatten))
json_data['h_pos'].append(h_pos)
json_data['t_pos'].append(t_pos)
json_data['relation'].append(1)
sentence_temp = []
entities_temp = []
h_pos = []
t_pos = []
current_ent=''
cont=0
dataset = MyDataset()
global test_loader
test_loader = DataLoader(dataset, batch_size=64, shuffle=False)
del dataset
#------------------Backend functions----------------------------------------
def training_model_rc(name, path_data, rel2id_path, epochs=200):
global default_path
default_path = os.path.dirname(os.path.abspath(__file__))
default_path = default_path.replace('\\', '/')
print(name)
#FUNCION
try:
define_model()
except:
return 13
print('Model defined')
check_create(default_path + '/../../models/RC/{}/'.format(name))
try:
prepare_data(rel2id_path, path_data)
except:
return 12
print('Data prepared')
#Train the model
try:
train_model(name, epochs, rel2id_path)
except:
return 7
#save the model in
path_model = default_path + '/../../models/RC/{}/best_model.pt'.format(name)
shutil.copy(rel2id_path, default_path + '/../../models/RC/{}/rel2id.json'.format(name))
return "model trined and saved at {}".format(path_model)
def use_model_rc(name, path_data, output_dir):
global default_path
default_path = os.path.dirname(os.path.abspath(__file__))
default_path = default_path.replace('\\', '/')
#--------------Load the trained model-------------------------
path_model = default_path + '/../../models/RC/{}/best_model.pt'.format(name)
rel2id_file = default_path + '/../../models/RC/{}/rel2id.json'.format(name)
with open(rel2id_file, mode='r') as f:
rel2id = json.load(f)
id2rel = [m for _,m in sorted(zip(list(rel2id.values()),list(rel2id.keys())), key=lambda pair: pair[0])]
if not (os.path.isfile(path_model)):
print('Model does not exists')
return 10
print(path_data)
if not os.path.isfile(path_data):
print('Input file is not a file')
return 9
global cnn
try:
cnn = MyCNN()
except:
return 13
print('Model defined')
try:
saved_model = torch.load(path_model)
cnn.load_state_dict(saved_model['model_state_dict'])
except:
return 1
print('Model loaded')
#-----------------Load the document-------------------------
try:
prepare_data_test(name, path_data)
except:
return 12
global json_data
print('Data prepared')
#-----------------Predict-------------------------
global test_loader
ypred = []
relations = []
for batch_idx, (c1, h1,c2,h2,c3, targets) in enumerate(test_loader):
x = cnn(c1, h1,c2,h2,c3)
ypred.append(nn.Softmax(dim=1)(x).detach().argmax(dim=1))
ypred = np.concatenate(ypred)
relations = [id2rel[rel] for rel in ypred]
print('prediction')
#-----------------Tagged the document-------------------------
global test_sentences
global entities
results = {'sentences':{'tokens':test_sentences, 'entities':entities}, 'relations': relations}
#-----------------Save the results-------------------------
try:
with open(output_dir, "w", encoding='utf-8') as write_file:
json.dump(results, write_file)
print('-'*20,'Tagged complete','-'*20)
print('Document tagged saved in {}'.format(output_dir))
except:
print('Error in output file')
return 11
return results