Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import pandas as pd | |
| import requests | |
| # Set the title of the Streamlit app | |
| st.title("SuperKart Product Sales Prediction") | |
| # Section for online prediction | |
| st.subheader("Online Prediction") | |
| st.header("Enter Product and Store Details") | |
| # Collect user input for product store features | |
| product_weight = st.number_input( | |
| "Product Weight (in kg)", min_value=0.0, step=0.1, value=10.0 | |
| ) | |
| product_sugar_content = st.selectbox( | |
| "Product Sugar Content", ["Low Sugar", "Regular", "No Sugar"] | |
| ) | |
| product_allocated_area = st.number_input( | |
| "Product Allocated Area (store fraction)", min_value=0.0, max_value=1.0, step=0.01, value=0.05 | |
| ) | |
| product_type = st.selectbox( | |
| "Product Type", | |
| [ | |
| "Frozen Foods", "Dairy", "Canned", "Baking Goods", "Health and Hygiene", | |
| "Snack Foods", "Soft Drinks", "Meat", "Fruits and Vegetables", "Breads", | |
| "Breakfast Foods", "Starchy Foods", "Seafood", "Household", "Others" | |
| ] | |
| ) | |
| product_mrp = st.number_input( | |
| "Product MRP (Maximum Retail Price)", min_value=0.0, step=1.0, value=150.0 | |
| ) | |
| store_establishment_year = st.number_input( | |
| "Store Establishment Year", min_value=1900, max_value=2025, step=1, value=2005 | |
| ) | |
| store_size = st.selectbox("Store Size", ["Small", "Medium", "High"]) | |
| store_location_city_type = st.selectbox( | |
| "Store Location City Type", ["Tier 1", "Tier 2", "Tier 3"] | |
| ) | |
| store_type = st.selectbox( | |
| "Store Type", | |
| ["Supermarket Type1", "Supermarket Type2", "Departmental Store", "Food Mart"] | |
| ) | |
| # Convert user input into a DataFrame | |
| input_data = pd.DataFrame([{ | |
| 'Product_Weight': product_weight, | |
| 'Product_Sugar_Content': product_sugar_content, | |
| 'Product_Allocated_Area': product_allocated_area, | |
| 'Product_Type': product_type, | |
| 'Product_MRP': product_mrp, | |
| 'Store_Establishment_Year': store_establishment_year, | |
| 'Store_Size': store_size, | |
| 'Store_Location_City_Type': store_location_city_type, | |
| 'Store_Type': store_type | |
| }]) | |
| # Make prediction when the "Predict" button is clicked | |
| if st.button("Predict"): | |
| #response = requests.post("https://<username>-<repo_id>.hf.space/v1/rental", json=input_data.to_dict(orient='records')[0]) # Send data to Flask API | |
| response = requests.post("https://Santhu976-ProdStoreSalesTotalPredictionBackend.hf.space/v1/sales", json=input_data.to_dict(orient='records')[0]) | |
| if response.status_code == 200: | |
| prediction = response.json()['Predicted Price'] | |
| st.success(f"Predicted Product_Store_Sales_Total: {prediction}") | |
| else: | |
| st.error("Error making prediction.") | |
| # Section for batch prediction | |
| st.subheader("Batch Prediction") | |
| # Allow users to upload a CSV file for batch prediction | |
| uploaded_file = st.file_uploader("Upload CSV file for batch prediction", type=["csv"]) | |
| # Make batch prediction when the "Predict Batch" button is clicked | |
| if uploaded_file is not None: | |
| if st.button("Predict Batch"): | |
| response = requests.post("https://Santhu976-ProdStoreSalesTotalPredictionBackend.hf.space/v1/salesbatch", files={"file": uploaded_file}) # Send file to Flask API | |
| if response.status_code == 200: | |
| predictions = response.json() | |
| st.success("Batch predictions completed!") | |
| st.write(predictions) # Display the predictions | |
| else: | |
| st.error("Error making batch prediction.") | |