|
|
|
|
|
import numpy as np |
|
|
import joblib |
|
|
import pandas as pd |
|
|
from flask import Flask, request, jsonify |
|
|
|
|
|
|
|
|
sales_total_predictor_api = Flask("SuperKart Sales Total Predictor") |
|
|
|
|
|
|
|
|
model = joblib.load("product_stores_sales_total_prediction_model_v1_0.joblib") |
|
|
|
|
|
|
|
|
@sales_total_predictor_api.get('/') |
|
|
def home(): |
|
|
""" |
|
|
This function handles GET requests to the root URL ('/') of the API. |
|
|
It returns a simple welcome message. |
|
|
""" |
|
|
return "Welcome to the SuperKart Sales Total Prediction API!" |
|
|
|
|
|
|
|
|
@sales_total_predictor_api.post('/v1/sales') |
|
|
def predict_sales_total(): |
|
|
""" |
|
|
This function handles POST requests to the '/v1/sales' endpoint. |
|
|
It expects a JSON payload containing product and store details and returns |
|
|
the predicted product_store_sales_total as a JSON response. |
|
|
""" |
|
|
|
|
|
product_store_data = request.get_json() |
|
|
|
|
|
|
|
|
sample = { |
|
|
'Product_Weight': product_store_data['Product_Weight'], |
|
|
'Product_Sugar_Content': product_store_data['Product_Sugar_Content'], |
|
|
'Product_Allocated_Area': product_store_data['Product_Allocated_Area'], |
|
|
'Product_Type': product_store_data['Product_Type'], |
|
|
'Product_MRP': product_store_data['Product_MRP'], |
|
|
'Store_Establishment_Year': product_store_data['Store_Establishment_Year'], |
|
|
'Store_Size': product_store_data['Store_Size'], |
|
|
'Store_Location_City_Type': product_store_data['Store_Location_City_Type'], |
|
|
'Store_Type': product_store_data['Store_Type'] |
|
|
} |
|
|
|
|
|
|
|
|
input_data = pd.DataFrame([sample]) |
|
|
|
|
|
|
|
|
predicted_price = model.predict(input_data)[0] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return jsonify({'Predicted Price': float(predicted_price)}) |
|
|
|
|
|
|
|
|
|
|
|
@sales_total_predictor_api.post('/v1/salesbatch') |
|
|
def predict_sales_total_batch(): |
|
|
""" |
|
|
This function handles POST requests to the '/v1/salesbatch' endpoint. |
|
|
It expects a CSV file containing product and store details for multiple properties |
|
|
and returns the predicted productstore sales total prices as a dictionary in the JSON response. |
|
|
""" |
|
|
|
|
|
file = request.files['file'] |
|
|
|
|
|
|
|
|
input_data = pd.read_csv(file) |
|
|
|
|
|
|
|
|
predicted_prices = model.predict(input_data).tolist() |
|
|
|
|
|
|
|
|
product_store_ids = input_data[['Product_Id', 'Store_Id']].values.tolist() |
|
|
keys = [f"{pid}_{sid}" for pid, sid in product_store_ids] |
|
|
output_dict = dict(zip(keys, predicted_prices)) |
|
|
|
|
|
|
|
|
return output_dict |
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
sales_total_predictor_api.run(debug=True) |
|
|
|