Santarabantoosoo commited on
Commit
50ebde2
1 Parent(s): 413eacd

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -166
app.py DELETED
@@ -1,166 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- """semantic_song_search.ipynb
3
-
4
- Automatically generated by Colaboratory.
5
-
6
- Original file is located at
7
- https://colab.research.google.com/drive/17IwipreOw_cvu1TsA4WUrfzxTBBHMiVh
8
- """
9
-
10
- from sentence_transformers import SentenceTransformer, util
11
- import gradio as gr
12
- import pandas as pd
13
- import torch
14
- import numpy as np
15
-
16
- from google.colab import drive
17
- drive.mount('/content/gdrive')
18
-
19
- # Commented out IPython magic to ensure Python compatibility.
20
- # %cd gdrive/MyDrive/song_sentiment
21
-
22
- """### model all mini -- small dataset """
23
-
24
- model_all_mini = SentenceTransformer('all-MiniLM-L12-v2')
25
-
26
- sds = pd.read_csv("data/small_dataset.csv")
27
-
28
- embeddings_sds = model_all_mini.encode(sds['lyrics'])
29
- sds['embeddings'] = list(embeddings_sds)
30
-
31
- def relevance_scores(query_embed):
32
- scores = [cosine_similarity(query_embed, v2) for v2 in sds['embeddings']]
33
- scores = pd.Series(scores)
34
- return(scores)
35
-
36
-
37
- def semantic_search(query_sentence, df = sds, return_top = False):
38
- query_embed = model_all_mini.encode(query_sentence)
39
- scores = relevance_scores(query_embed)
40
- df['scores'] = scores
41
- sorted_df = df.sort_values(by = 'scores', ascending = False)
42
- if return_top == False:
43
- sorted_df['scores'] = round(sorted_df['scores'],3)
44
- return sorted_df[['title','artist','scores']].head(3)
45
- else:
46
- return sorted_df.iloc[0]['lyrics'][:200]
47
-
48
- def cosine_similarity(v1, v2):
49
- d = np.dot(v1, v2)
50
- cos_theta = d / (np.linalg.norm(v1) * np.linalg.norm(v2))
51
- return(cos_theta)
52
-
53
- semantic_search("i'm pleased you are doing well after we left each other")
54
-
55
- print(semantic_search("i'm pleased you are doing well after we left each other", return_top = True))
56
-
57
- """### model msmarco-distilbert-base-dot-prod-v3 with hf dataset (with song name)"""
58
-
59
- query = ["i'm pleased you are doing well after we left each other"]
60
-
61
- hf_data = pd.read_csv('data/hf_train_with_SName.csv')
62
-
63
- hf_data['Lyric'] = hf_data['Lyric'].str.replace('\\n', "")
64
-
65
- hf_data.head()
66
-
67
- model_msmarco_v3 = SentenceTransformer('msmarco-distilbert-base-dot-prod-v3')
68
-
69
- query_embedding = model_msmarco_v3.encode(query)
70
-
71
- passage_embedding = model_msmarco_v3.encode(hf_data[:1000].Lyric)
72
-
73
- corpus_embeddings = torch.from_numpy(passage_embedding).float().to('cuda')
74
- corpus_embeddings = util.normalize_embeddings(corpus_embeddings)
75
-
76
- # query_embeddings = torch.from_numpy(query_embedding).float().to('cuda')
77
- # query_embeddings = util.normalize_embeddings(query_embeddings)
78
- # hits = util.semantic_search(query_embeddings, corpus_embeddings, score_function=util.dot_score)
79
-
80
- # best_match = hits[0][0]['corpus_id']
81
-
82
- hf_data.iloc[best_match, :]
83
-
84
- hf_data.iloc[best_match]['Lyric']
85
-
86
- hf_data.head()
87
-
88
- def msmarco_match(query, return_top = True):
89
- query_embedding = model_msmarco_v3.encode(query)
90
- query_embeddings = torch.from_numpy(query_embedding).float().to('cuda')
91
- query_embeddings = util.normalize_embeddings(query_embeddings)
92
- hits = util.semantic_search(query_embeddings, corpus_embeddings, score_function=util.dot_score)
93
- top_hits = hits[0][0:3]
94
-
95
- ids = [item['corpus_id'] for item in top_hits]
96
- scores = pd.Series([round(item['score'],3) for item in top_hits])
97
-
98
- if return_top == True:
99
- return hf_data.iloc[ids[0]]['Lyric'][:200]
100
- else:
101
- songs = hf_data.iloc[ids].reset_index()
102
- songs = pd.concat([songs, scores], axis = 1)
103
-
104
- songs.rename(columns={0: 'Score'},
105
- inplace=True)
106
- return songs.drop(columns = 'index')
107
-
108
- msmarco_match(query, return_top= False)
109
-
110
- msmarco_match(query)
111
-
112
- msmarco_match(query, return_top = False)
113
-
114
- """## Fine-tuned all-mini -- small dataset"""
115
-
116
- model_fine_tuned = SentenceTransformer('models/finetune_mnr_final')
117
-
118
- embeddings_sds_ft = model_fine_tuned.encode(sds['lyrics'])
119
- sds['embeddings_ft'] = list(embeddings_sds_ft)
120
-
121
- def relevance_scores_ft(query_embed):
122
- scores = [cosine_similarity(query_embed, v2) for v2 in sds['embeddings_ft']]
123
- scores = pd.Series(scores)
124
- return(scores)
125
-
126
-
127
- def semantic_search_ft(query_sentence, df = sds, return_top = False):
128
- query_embed = model_fine_tuned.encode(query_sentence)
129
- scores = relevance_scores(query_embed)
130
- df['scores'] = scores
131
- sorted_df = df.sort_values(by = 'scores', ascending = False)
132
- if return_top == False:
133
- sorted_df['scores'] = round(sorted_df['scores'],3)
134
- return sorted_df[['title','artist','scores']].head(3)
135
- else:
136
- return sorted_df.iloc[0]['lyrics'][:200]
137
-
138
- """## Gradio App """
139
-
140
- def get_recom(choice, query):
141
- if choice == "all-MiniLM":
142
- return semantic_search(query), semantic_search(query, return_top = True)
143
- elif choice == "all-MiniLM-fine-tuned":
144
- return semantic_search_ft(query), semantic_search_ft(query, return_top = True)
145
- else:
146
- list_query = []
147
- query2 = query
148
- list_query.append([query, query2])
149
- return msmarco_match(list_query, return_top = False) , msmarco_match(list_query)
150
-
151
-
152
- iface = gr.Interface(
153
- title = 'Enjoy our recommendations',
154
- description = 'Do you think we can guess what you like?',
155
- fn=get_recom,
156
- inputs= [ gr.Radio(choices = ["all-MiniLM", "all-MiniLM-fine-tuned", "msmarco"], label="Choose ur model"),
157
- gr.Textbox(lines=4, placeholder="Enter ur query...", label = 'Query', show_label = True)],
158
- outputs = [gr.Dataframe(label = "Top songs", show_label = True),
159
- gr.Text(label = 'A glimpse of the closest match', show_label = True)]
160
- ,live = False,
161
- interpretation="default",
162
- )
163
-
164
-
165
- iface.launch()
166
-