Santarabantoosoo's picture
Upload 2 files
3a04029
raw
history blame
5.58 kB
# -*- coding: utf-8 -*-
"""semantic_song_search.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/17IwipreOw_cvu1TsA4WUrfzxTBBHMiVh
"""
from sentence_transformers import SentenceTransformer, util
import gradio as gr
import pandas as pd
import torch
import numpy as np
from google.colab import drive
drive.mount('/content/gdrive')
# Commented out IPython magic to ensure Python compatibility.
# %cd gdrive/MyDrive/song_sentiment
"""### model all mini -- small dataset """
model_all_mini = SentenceTransformer('all-MiniLM-L12-v2')
sds = pd.read_csv("data/small_dataset.csv")
embeddings_sds = model_all_mini.encode(sds['lyrics'])
sds['embeddings'] = list(embeddings_sds)
def relevance_scores(query_embed):
scores = [cosine_similarity(query_embed, v2) for v2 in sds['embeddings']]
scores = pd.Series(scores)
return(scores)
def semantic_search(query_sentence, df = sds, return_top = False):
query_embed = model_all_mini.encode(query_sentence)
scores = relevance_scores(query_embed)
df['scores'] = scores
sorted_df = df.sort_values(by = 'scores', ascending = False)
if return_top == False:
sorted_df['scores'] = round(sorted_df['scores'],3)
return sorted_df[['title','artist','scores']].head(3)
else:
return sorted_df.iloc[0]['lyrics'][:200]
def cosine_similarity(v1, v2):
d = np.dot(v1, v2)
cos_theta = d / (np.linalg.norm(v1) * np.linalg.norm(v2))
return(cos_theta)
semantic_search("i'm pleased you are doing well after we left each other")
print(semantic_search("i'm pleased you are doing well after we left each other", return_top = True))
"""### model msmarco-distilbert-base-dot-prod-v3 with hf dataset (with song name)"""
query = ["i'm pleased you are doing well after we left each other"]
hf_data = pd.read_csv('data/hf_train_with_SName.csv')
hf_data['Lyric'] = hf_data['Lyric'].str.replace('\\n', "")
hf_data.head()
model_msmarco_v3 = SentenceTransformer('msmarco-distilbert-base-dot-prod-v3')
query_embedding = model_msmarco_v3.encode(query)
passage_embedding = model_msmarco_v3.encode(hf_data[:1000].Lyric)
corpus_embeddings = torch.from_numpy(passage_embedding).float().to('cuda')
corpus_embeddings = util.normalize_embeddings(corpus_embeddings)
# query_embeddings = torch.from_numpy(query_embedding).float().to('cuda')
# query_embeddings = util.normalize_embeddings(query_embeddings)
# hits = util.semantic_search(query_embeddings, corpus_embeddings, score_function=util.dot_score)
# best_match = hits[0][0]['corpus_id']
hf_data.iloc[best_match, :]
hf_data.iloc[best_match]['Lyric']
hf_data.head()
def msmarco_match(query, return_top = True):
query_embedding = model_msmarco_v3.encode(query)
query_embeddings = torch.from_numpy(query_embedding).float().to('cuda')
query_embeddings = util.normalize_embeddings(query_embeddings)
hits = util.semantic_search(query_embeddings, corpus_embeddings, score_function=util.dot_score)
top_hits = hits[0][0:3]
ids = [item['corpus_id'] for item in top_hits]
scores = pd.Series([round(item['score'],3) for item in top_hits])
if return_top == True:
return hf_data.iloc[ids[0]]['Lyric'][:200]
else:
songs = hf_data.iloc[ids].reset_index()
songs = pd.concat([songs, scores], axis = 1)
songs.rename(columns={0: 'Score'},
inplace=True)
return songs.drop(columns = 'index')
msmarco_match(query, return_top= False)
msmarco_match(query)
msmarco_match(query, return_top = False)
"""## Fine-tuned all-mini -- small dataset"""
model_fine_tuned = SentenceTransformer('models/finetune_mnr_final')
embeddings_sds_ft = model_fine_tuned.encode(sds['lyrics'])
sds['embeddings_ft'] = list(embeddings_sds_ft)
def relevance_scores_ft(query_embed):
scores = [cosine_similarity(query_embed, v2) for v2 in sds['embeddings_ft']]
scores = pd.Series(scores)
return(scores)
def semantic_search_ft(query_sentence, df = sds, return_top = False):
query_embed = model_fine_tuned.encode(query_sentence)
scores = relevance_scores(query_embed)
df['scores'] = scores
sorted_df = df.sort_values(by = 'scores', ascending = False)
if return_top == False:
sorted_df['scores'] = round(sorted_df['scores'],3)
return sorted_df[['title','artist','scores']].head(3)
else:
return sorted_df.iloc[0]['lyrics'][:200]
"""## Gradio App """
def get_recom(choice, query):
if choice == "all-MiniLM":
return semantic_search(query), semantic_search(query, return_top = True)
elif choice == "all-MiniLM-fine-tuned":
return semantic_search_ft(query), semantic_search_ft(query, return_top = True)
else:
list_query = []
query2 = query
list_query.append([query, query2])
return msmarco_match(list_query, return_top = False) , msmarco_match(list_query)
iface = gr.Interface(
title = 'Enjoy our recommendations',
description = 'Do you think we can guess what you like?',
fn=get_recom,
inputs= [ gr.Radio(choices = ["all-MiniLM", "all-MiniLM-fine-tuned", "msmarco"], label="Choose ur model"),
gr.Textbox(lines=4, placeholder="Enter ur query...", label = 'Query', show_label = True)],
outputs = [gr.Dataframe(label = "Top songs", show_label = True),
gr.Text(label = 'A glimpse of the closest match', show_label = True)]
,live = False,
interpretation="default",
)
iface.launch()