Upload 2 files
Browse files- app.py +364 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import h2o
|
3 |
+
from h2o.automl import H2OAutoML
|
4 |
+
import pandas as pd
|
5 |
+
import os
|
6 |
+
import numpy as np
|
7 |
+
from sklearn.metrics import mean_squared_error
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import shutil
|
10 |
+
import zipfile
|
11 |
+
import io
|
12 |
+
import tempfile
|
13 |
+
import zipfile
|
14 |
+
|
15 |
+
# Set page config at the very beginning
|
16 |
+
st.set_page_config(page_title="AquaLearn", layout="wide")
|
17 |
+
|
18 |
+
# Initialize the H2O server
|
19 |
+
h2o.init()
|
20 |
+
def rename_columns_alphabetically(df):
|
21 |
+
new_columns = [chr(65 + i) for i in range(len(df.columns))]
|
22 |
+
return df.rename(columns=dict(zip(df.columns, new_columns)))
|
23 |
+
|
24 |
+
def sanitize_column_name(name):
|
25 |
+
# Replace non-alphanumeric characters with underscores
|
26 |
+
sanitized = ''.join(c if c.isalnum() else '_' for c in name)
|
27 |
+
# Ensure the name starts with a letter or underscore
|
28 |
+
if not sanitized[0].isalpha() and sanitized[0] != '_':
|
29 |
+
sanitized = 'f_' + sanitized
|
30 |
+
return sanitized
|
31 |
+
|
32 |
+
# Create a directory for saving models
|
33 |
+
if not os.path.exists("saved_models"):
|
34 |
+
os.makedirs("saved_models")
|
35 |
+
|
36 |
+
def load_data():
|
37 |
+
st.title("Aqua Learn")
|
38 |
+
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
39 |
+
if uploaded_file is not None:
|
40 |
+
train = pd.read_csv(uploaded_file)
|
41 |
+
st.write(train.head())
|
42 |
+
return h2o.H2OFrame(train)
|
43 |
+
return None
|
44 |
+
|
45 |
+
def select_problem_type():
|
46 |
+
return st.selectbox("Select Problem Type:", ['Classification', 'Regression'])
|
47 |
+
|
48 |
+
def select_target_column(train_h2o):
|
49 |
+
return st.selectbox("Select Target Column:", train_h2o.columns)
|
50 |
+
|
51 |
+
def prepare_features(train_h2o, y, problem_type):
|
52 |
+
x = train_h2o.columns
|
53 |
+
x.remove(y)
|
54 |
+
if problem_type == 'Classification':
|
55 |
+
train_h2o[y] = train_h2o[y].asfactor()
|
56 |
+
|
57 |
+
# Rename columns
|
58 |
+
new_columns = [chr(65 + i) for i in range(len(train_h2o.columns))]
|
59 |
+
train_h2o.columns = new_columns
|
60 |
+
y = new_columns[-1] # Assume the target is the last column
|
61 |
+
x = new_columns[:-1]
|
62 |
+
|
63 |
+
return x, y, train_h2o
|
64 |
+
|
65 |
+
def select_algorithms():
|
66 |
+
algorithm_options = ['DeepLearning', 'GLM', 'GBM', 'DRF', 'XGBoost']
|
67 |
+
return st.multiselect("Select Algorithms:", algorithm_options)
|
68 |
+
|
69 |
+
def set_automl_parameters():
|
70 |
+
max_models = st.number_input("Max Models:", value=20, min_value=1)
|
71 |
+
max_runtime = st.number_input("Max Runtime (seconds):", value=600, min_value=1)
|
72 |
+
return max_models, max_runtime
|
73 |
+
|
74 |
+
def run_automl(x, y, train, problem_type, selected_algos, max_models, max_runtime):
|
75 |
+
aml = H2OAutoML(max_models=max_models,
|
76 |
+
seed=1,
|
77 |
+
max_runtime_secs=max_runtime,
|
78 |
+
sort_metric="AUC" if problem_type == 'Classification' else "RMSE",
|
79 |
+
include_algos=selected_algos)
|
80 |
+
aml.train(x=x, y=y, training_frame=train)
|
81 |
+
return aml
|
82 |
+
|
83 |
+
def display_results(aml, test):
|
84 |
+
st.subheader("AutoML Leaderboard")
|
85 |
+
st.write(aml.leaderboard.as_data_frame())
|
86 |
+
|
87 |
+
st.subheader("Best Model Performance")
|
88 |
+
best_model = aml.leader
|
89 |
+
perf = best_model.model_performance(test)
|
90 |
+
st.write(perf)
|
91 |
+
|
92 |
+
def save_and_evaluate_models(aml, test, y, problem_type):
|
93 |
+
if st.button("Save Models and Calculate Performance"):
|
94 |
+
model_performances = []
|
95 |
+
for model_id in aml.leaderboard['model_id'].as_data_frame().values:
|
96 |
+
model = h2o.get_model(model_id[0])
|
97 |
+
|
98 |
+
# model_path = os.path.join("saved_models", f"{model_id[0]}")
|
99 |
+
# h2o.save_model(model=model, path=model_path, force=True)
|
100 |
+
# st.session_state.saved_models.append((model_id[0], model_path))
|
101 |
+
|
102 |
+
preds = model.predict(test)
|
103 |
+
actual = test[y].as_data_frame().values.flatten()
|
104 |
+
predicted = preds.as_data_frame()['predict'].values.flatten()
|
105 |
+
|
106 |
+
if problem_type == 'Classification':
|
107 |
+
performance = (actual == predicted).mean()
|
108 |
+
metric_name = 'accuracy'
|
109 |
+
else:
|
110 |
+
performance = np.sqrt(mean_squared_error(actual, predicted))
|
111 |
+
metric_name = 'rmse'
|
112 |
+
|
113 |
+
model_performances.append({'model_id': model_id[0], metric_name: performance})
|
114 |
+
|
115 |
+
performance_df = pd.DataFrame(model_performances)
|
116 |
+
st.write(performance_df)
|
117 |
+
|
118 |
+
# Create and display the bar plot
|
119 |
+
st.subheader("Model Performance Visualization")
|
120 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
121 |
+
performance_df.sort_values(by=metric_name, ascending=False, inplace=True)
|
122 |
+
ax.barh(performance_df['model_id'], performance_df[metric_name], color='skyblue')
|
123 |
+
ax.set_xlabel(metric_name.capitalize())
|
124 |
+
ax.set_ylabel('Model ID')
|
125 |
+
ax.set_title(f'Model {metric_name.capitalize()} from H2O AutoML')
|
126 |
+
ax.grid(axis='x')
|
127 |
+
st.pyplot(fig)
|
128 |
+
|
129 |
+
def download_model():
|
130 |
+
st.subheader("Download Model")
|
131 |
+
if 'saved_models' in st.session_state and st.session_state.saved_models:
|
132 |
+
model_to_download = st.selectbox("Select Model to Download:",
|
133 |
+
[model[0] for model in st.session_state.saved_models])
|
134 |
+
if st.button("Download Selected Model"):
|
135 |
+
model_path = next(model[1] for model in st.session_state.saved_models if model[0] == model_to_download)
|
136 |
+
|
137 |
+
if os.path.isdir(model_path):
|
138 |
+
# If it's a directory, create a zip file
|
139 |
+
zip_buffer = io.BytesIO()
|
140 |
+
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
|
141 |
+
for root, _, files in os.walk(model_path):
|
142 |
+
for file in files:
|
143 |
+
zip_file.write(os.path.join(root, file),
|
144 |
+
os.path.relpath(os.path.join(root, file), model_path))
|
145 |
+
|
146 |
+
zip_buffer.seek(0)
|
147 |
+
st.download_button(
|
148 |
+
label="Click to Download",
|
149 |
+
data=zip_buffer,
|
150 |
+
file_name=f"{model_to_download}.zip",
|
151 |
+
mime="application/zip"
|
152 |
+
)
|
153 |
+
else:
|
154 |
+
# If it's already a file, offer it for download
|
155 |
+
with open(model_path, "rb") as file:
|
156 |
+
st.download_button(
|
157 |
+
label="Click to Download",
|
158 |
+
data=file,
|
159 |
+
file_name=f"{model_to_download}.zip",
|
160 |
+
mime="application/zip"
|
161 |
+
)
|
162 |
+
else:
|
163 |
+
st.write("No models available for download. Please train and save models first.")
|
164 |
+
|
165 |
+
def further_training(aml, x, y, train, problem_type):
|
166 |
+
st.subheader("Further Training")
|
167 |
+
leaderboard_df = aml.leaderboard.as_data_frame()
|
168 |
+
model_to_train = st.selectbox("Select Model for Training:", leaderboard_df['model_id'].tolist())
|
169 |
+
training_time = st.number_input("Training Time (seconds):", value=60, min_value=1)
|
170 |
+
|
171 |
+
if st.button("Train Model"):
|
172 |
+
model = h2o.get_model(model_to_train)
|
173 |
+
|
174 |
+
with st.spinner(f"Training model: {model_to_train} for {training_time} seconds..."):
|
175 |
+
if isinstance(model, h2o.estimators.stackedensemble.H2OStackedEnsembleEstimator):
|
176 |
+
aml = H2OAutoML(max_runtime_secs=training_time, seed=1, sort_metric="AUC" if problem_type == 'Classification' else "RMSE")
|
177 |
+
aml.train(x=x, y=y, training_frame=train)
|
178 |
+
model = aml.leader
|
179 |
+
else:
|
180 |
+
model.train(x=x, y=y, training_frame=train, max_runtime_secs=training_time)
|
181 |
+
|
182 |
+
perf = model.model_performance(train)
|
183 |
+
st.write("Model performance after training:")
|
184 |
+
st.write(perf)
|
185 |
+
|
186 |
+
# Create a temporary directory to save the model
|
187 |
+
temp_dir = os.path.join("saved_models", "temp")
|
188 |
+
os.makedirs(temp_dir, exist_ok=True)
|
189 |
+
model_path = os.path.join(temp_dir, f"{model.model_id}")
|
190 |
+
h2o.save_model(model=model, path=model_path, force=True)
|
191 |
+
|
192 |
+
# Create a zip file of the model
|
193 |
+
zip_buffer = io.BytesIO()
|
194 |
+
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
|
195 |
+
for root, _, files in os.walk(model_path):
|
196 |
+
for file in files:
|
197 |
+
zip_file.write(os.path.join(root, file),
|
198 |
+
os.path.relpath(os.path.join(root, file), model_path))
|
199 |
+
|
200 |
+
zip_buffer.seek(0)
|
201 |
+
st.download_button(
|
202 |
+
label="Download Retrained Model",
|
203 |
+
data=zip_buffer,
|
204 |
+
file_name=f"{model.model_id}.zip",
|
205 |
+
mime="application/zip"
|
206 |
+
)
|
207 |
+
|
208 |
+
# Clean up the temporary directory
|
209 |
+
shutil.rmtree(temp_dir)
|
210 |
+
|
211 |
+
st.success(f"Retrained model ready for download: {model.model_id}")
|
212 |
+
|
213 |
+
def make_prediction():
|
214 |
+
st.subheader("Make Prediction")
|
215 |
+
|
216 |
+
uploaded_zip = st.file_uploader("Upload a zip file containing the model", type="zip")
|
217 |
+
if uploaded_zip is not None:
|
218 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
219 |
+
zip_path = os.path.join(tmpdirname, "model.zip")
|
220 |
+
with open(zip_path, "wb") as f:
|
221 |
+
f.write(uploaded_zip.getbuffer())
|
222 |
+
|
223 |
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
224 |
+
zip_ref.extractall(tmpdirname)
|
225 |
+
|
226 |
+
extracted_files = os.listdir(tmpdirname)
|
227 |
+
if len(extracted_files) == 0:
|
228 |
+
st.error("The uploaded zip file is empty.")
|
229 |
+
return
|
230 |
+
|
231 |
+
model_file = next((f for f in extracted_files if f != "model.zip"), None)
|
232 |
+
if model_file is None:
|
233 |
+
st.error("No model file found in the uploaded zip.")
|
234 |
+
return
|
235 |
+
|
236 |
+
model_path = os.path.join(tmpdirname, model_file)
|
237 |
+
|
238 |
+
try:
|
239 |
+
model_for_prediction = h2o.load_model(model_path)
|
240 |
+
except Exception as e:
|
241 |
+
st.error(f"Error loading the model: {str(e)}")
|
242 |
+
st.error("Please ensure you're uploading a valid H2O model file.")
|
243 |
+
return
|
244 |
+
|
245 |
+
# Ask user to input feature names
|
246 |
+
feature_names_input = st.text_input("Enter feature names, separated by commas:")
|
247 |
+
original_feature_names = [name.strip() for name in feature_names_input.split(',') if name.strip()]
|
248 |
+
|
249 |
+
if not original_feature_names:
|
250 |
+
st.error("Please enter at least one feature name.")
|
251 |
+
return
|
252 |
+
|
253 |
+
# Create a mapping from original names to A, B, C, etc.
|
254 |
+
feature_mapping = {name: chr(65 + i) for i, name in enumerate(original_feature_names)}
|
255 |
+
reverse_mapping = {v: k for k, v in feature_mapping.items()}
|
256 |
+
|
257 |
+
prediction_type = st.radio("Choose prediction type:", ["Upload CSV", "Single Entry"])
|
258 |
+
|
259 |
+
if prediction_type == "Upload CSV":
|
260 |
+
uploaded_csv = st.file_uploader("Upload a CSV file for prediction", type="csv")
|
261 |
+
if uploaded_csv is not None:
|
262 |
+
prediction_data = pd.read_csv(uploaded_csv)
|
263 |
+
|
264 |
+
# Rename columns to A, B, C, etc.
|
265 |
+
prediction_data = prediction_data.rename(columns=feature_mapping)
|
266 |
+
|
267 |
+
prediction_h2o = h2o.H2OFrame(prediction_data)
|
268 |
+
try:
|
269 |
+
predictions = model_for_prediction.predict(prediction_h2o)
|
270 |
+
predictions_df = predictions.as_data_frame()
|
271 |
+
|
272 |
+
# Combine original data with predictions
|
273 |
+
result_df = pd.concat([prediction_data, predictions_df], axis=1)
|
274 |
+
|
275 |
+
# Rename columns back to original names for display
|
276 |
+
result_df = result_df.rename(columns=reverse_mapping)
|
277 |
+
|
278 |
+
st.write("Predictions (showing first 10 rows):")
|
279 |
+
st.write(result_df.head(10))
|
280 |
+
|
281 |
+
# Option to download the full results
|
282 |
+
csv = result_df.to_csv(index=False)
|
283 |
+
st.download_button(
|
284 |
+
label="Download full results as CSV",
|
285 |
+
data=csv,
|
286 |
+
file_name="predictions_results.csv",
|
287 |
+
mime="text/csv"
|
288 |
+
)
|
289 |
+
except Exception as e:
|
290 |
+
st.error(f"Error making predictions: {str(e)}")
|
291 |
+
st.error("Please ensure your CSV file matches the model's expected input format.")
|
292 |
+
|
293 |
+
else: # Single Entry
|
294 |
+
sample_input = {}
|
295 |
+
for original_name, coded_name in feature_mapping.items():
|
296 |
+
value = st.text_input(f"Enter {original_name} ({coded_name}):")
|
297 |
+
try:
|
298 |
+
sample_input[coded_name] = [float(value)]
|
299 |
+
except ValueError:
|
300 |
+
sample_input[coded_name] = [value]
|
301 |
+
|
302 |
+
if st.button("Predict"):
|
303 |
+
sample_h2o = h2o.H2OFrame(sample_input)
|
304 |
+
try:
|
305 |
+
predictions = model_for_prediction.predict(sample_h2o)
|
306 |
+
prediction_value = predictions['predict'][0,0]
|
307 |
+
st.write(f"Predicted value: {prediction_value}")
|
308 |
+
except Exception as e:
|
309 |
+
st.error(f"Error making prediction: {str(e)}")
|
310 |
+
st.error("Please ensure you've entered valid input values.")
|
311 |
+
else:
|
312 |
+
st.write("Please upload a zip file containing the model to make predictions.")
|
313 |
+
def main():
|
314 |
+
train_h2o = load_data()
|
315 |
+
if train_h2o is not None:
|
316 |
+
problem_type = select_problem_type()
|
317 |
+
target_column = select_target_column(train_h2o)
|
318 |
+
|
319 |
+
if st.button("Set Target and Continue"):
|
320 |
+
x, target_column, train_h2o = prepare_features(train_h2o, target_column, problem_type)
|
321 |
+
st.session_state.features_prepared = True
|
322 |
+
st.session_state.x = x
|
323 |
+
st.session_state.target_column = target_column
|
324 |
+
st.session_state.train_h2o = train_h2o
|
325 |
+
st.session_state.problem_type = problem_type
|
326 |
+
|
327 |
+
if 'features_prepared' in st.session_state and st.session_state.features_prepared:
|
328 |
+
st.write(f"Target Column: {st.session_state.target_column}")
|
329 |
+
st.write(f"Feature Columns: {st.session_state.x}")
|
330 |
+
|
331 |
+
train, test = st.session_state.train_h2o.split_frame(ratios=[0.8])
|
332 |
+
|
333 |
+
selected_algos = select_algorithms()
|
334 |
+
max_models, max_runtime = set_automl_parameters()
|
335 |
+
|
336 |
+
if st.button("Start AutoML"):
|
337 |
+
if not selected_algos:
|
338 |
+
st.error("Please select at least one algorithm.")
|
339 |
+
else:
|
340 |
+
with st.spinner("Running AutoML..."):
|
341 |
+
aml = run_automl(st.session_state.x, st.session_state.target_column, train,
|
342 |
+
st.session_state.problem_type, selected_algos, max_models, max_runtime)
|
343 |
+
|
344 |
+
st.success("AutoML training completed.")
|
345 |
+
st.session_state.aml = aml
|
346 |
+
st.session_state.test = test
|
347 |
+
|
348 |
+
if 'aml' in st.session_state:
|
349 |
+
display_results(st.session_state.aml, st.session_state.test)
|
350 |
+
save_and_evaluate_models(st.session_state.aml, st.session_state.test, st.session_state.target_column, st.session_state.problem_type)
|
351 |
+
download_model()
|
352 |
+
further_training(st.session_state.aml, st.session_state.x, st.session_state.target_column, train, st.session_state.problem_type)
|
353 |
+
|
354 |
+
make_prediction() # Call make_prediction without arguments
|
355 |
+
|
356 |
+
if __name__ == "__main__":
|
357 |
+
if 'features_prepared' not in st.session_state:
|
358 |
+
st.session_state.features_prepared = False
|
359 |
+
if 'saved_models' not in st.session_state:
|
360 |
+
st.session_state.saved_models = []
|
361 |
+
main()
|
362 |
+
|
363 |
+
# Clean up saved models when the script ends
|
364 |
+
shutil.rmtree("saved_models", ignore_errors=True)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.39.0
|
2 |
+
h2o==3.46.0.5
|
3 |
+
pandas==2.2.2
|
4 |
+
matplotlib==3.7.1
|
5 |
+
numpy==1.26.4
|