sanjeevl10 commited on
Commit
b69f18a
2 Parent(s): 38b6b6d cb954a2

fic the changes

Browse files
.DS_Store ADDED
Binary file (6.15 kB). View file
 
.gitignore ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ .env
2
+ __pycache__/
3
+ .chainlit
4
+ *.faiss
5
+ *.pkl
6
+ .files
README.md CHANGED
@@ -1 +1,17 @@
1
- # StockSavvy
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # StockSavvy
2
+
3
+ ```bash
4
+ git clone https://github.com/amalaj7/Chatbot-using-Langchain-Chainlit.git
5
+ ```
6
+ Install dependencies
7
+ ```bash
8
+ pip install -r requirements.txt
9
+
10
+ ```
11
+ Run Chainlit app
12
+ ```python
13
+ chainlit run app.py
14
+ ```
15
+
16
+ UI:
17
+ ![Homepage_UI](homepage.png)
StockSavvy ADDED
@@ -0,0 +1 @@
 
 
1
+ Subproject commit 96ebbbcb8d85092d08cbf7726124f44af073d060
app_test3_memory.py ADDED
@@ -0,0 +1,303 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain_experimental.agents import create_pandas_dataframe_agent
2
+ from langchain.llms import OpenAI
3
+ import chainlit as cl
4
+ from plotly.subplots import make_subplots
5
+ import utils as u
6
+ from langchain.agents import AgentExecutor, create_openai_tools_agent
7
+ from langchain_core.messages import BaseMessage, HumanMessage
8
+ from langchain_openai import ChatOpenAI
9
+ from langchain_core.output_parsers.openai_functions import JsonOutputFunctionsParser
10
+ from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
11
+ from tools import data_analyst
12
+ from tools import stock_sentiment_evalutor
13
+ import functools
14
+ from typing import Annotated
15
+ import operator
16
+ from typing import Sequence, TypedDict
17
+ from langchain.agents import initialize_agent, Tool
18
+ from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
19
+ from langgraph.graph import END, StateGraph
20
+ import numpy as np
21
+ import pandas as pd
22
+ from dotenv import load_dotenv
23
+ import os
24
+ import yfinance as yf
25
+ import functools
26
+ from typing import Annotated
27
+ import operator
28
+ from typing import Sequence, TypedDict
29
+ from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
30
+ from langgraph.graph import END, StateGraph
31
+ from tools import data_analyst, forecasting_expert_arima, forecasting_expert_rf, evaluator, stock_sentiment_evalutor, investment_advisor
32
+ from chainlit.input_widget import Select
33
+ import matplotlib.pyplot as plt
34
+ from langgraph.checkpoint.memory import MemorySaver
35
+
36
+ load_dotenv()
37
+ OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
38
+
39
+ from GoogleNews import GoogleNews
40
+
41
+ def search_news(stockticker):
42
+ """Useful to search the internet for news about a given topic and return relevant results."""
43
+ # Set the number of top news results to return
44
+ googlenews = GoogleNews()
45
+ googlenews.set_period('7d')
46
+ googlenews.get_news(stockticker)
47
+ result_string=googlenews.get_texts()
48
+
49
+ return result_string
50
+
51
+
52
+ def create_agent(llm: ChatOpenAI, tools: list, system_prompt: str):
53
+ # Each worker node will be given a name and some tools.
54
+ prompt = ChatPromptTemplate.from_messages(
55
+ [
56
+ (
57
+ "system",
58
+ system_prompt,
59
+ ),
60
+ MessagesPlaceholder(variable_name="messages"),
61
+ MessagesPlaceholder(variable_name="agent_scratchpad"),
62
+ ]
63
+ )
64
+ agent = create_openai_tools_agent(llm, tools, prompt)
65
+ executor = AgentExecutor(agent=agent, tools=tools)
66
+ return executor
67
+
68
+
69
+ def agent_node(state, agent, name):
70
+ result = agent.invoke(state)
71
+ return {"messages": [HumanMessage(content=result["output"], name=name)]}
72
+
73
+ llm = ChatOpenAI(model="gpt-3.5-turbo")
74
+
75
+ #======================== AGENTS ==================================
76
+ # The agent state is the input to each node in the graph
77
+ class AgentState(TypedDict):
78
+ # The annotation tells the graph that new messages will always
79
+ # be added to the current states
80
+ messages: Annotated[Sequence[BaseMessage], operator.add]
81
+ # The 'next' field indicates where to route to next
82
+ next: str
83
+
84
+ # DATA ANALYST
85
+ prompt_data_analyst="You are a stock data analyst.\
86
+ Provide correct stock ticker from Yahoo Finance.\
87
+ Expected output: stocticker.\
88
+ Provide it in the following format: >>stockticker>> \
89
+ for example: >>AAPL>>"
90
+
91
+ tools_data_analyst=data_analyst.data_analyst_tools()
92
+ data_agent = create_agent(
93
+ llm,
94
+ tools_data_analyst,
95
+ prompt_data_analyst)
96
+ get_historical_prices = functools.partial(agent_node, agent=data_agent, name="Data_analyst")
97
+
98
+ #ARIMA Forecasting expert
99
+ prompt_forecasting_expert_arima="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
100
+ You are stock prediction expert, \
101
+ take historical stock data from message and train the ARIMA model from statsmodels Python library on the last week,then provide prediction for the 'Close' price for the next day.\
102
+ Give the value for mae_arima to Evaluator.\
103
+ Expected output:list of predicted prices with predicted dates for a selected stock ticker and mae_arima value.\n
104
+ <|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
105
+
106
+ tools_forecasting_expert_arima=forecasting_expert_arima.forecasting_expert_arima_tools()
107
+ code_forecasting_arima = create_agent(
108
+ llm,
109
+ tools_forecasting_expert_arima,
110
+ prompt_forecasting_expert_arima,
111
+ )
112
+ predict_future_prices_arima = functools.partial(agent_node, agent=code_forecasting_arima, name="Forecasting_expert_ARIMA")
113
+
114
+ # RF Forecasting expert
115
+ prompt_forecasting_expert_random_forest="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
116
+ You are stock prediction expert, \
117
+ take historical stock data from message and train the Random forest model from statsmodels Python library on the last week,then provide prediction for the 'Close' price for the next day.\
118
+ Give the value for mae_rf to Evaluator.\
119
+ Expected output:list of predicted prices with predicted dates for a selected stock ticker and mae_rf value.\n
120
+ <|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
121
+
122
+ tools_forecasting_expert_random_forest=forecasting_expert_rf.forecasting_expert_rf_tools()
123
+ code_forecasting_random_forest = create_agent(
124
+ llm,
125
+ tools_forecasting_expert_random_forest,
126
+ prompt_forecasting_expert_random_forest,
127
+ )
128
+ predict_future_prices_random_forest = functools.partial(agent_node, agent=code_forecasting_random_forest, name="Forecasting_expert_random_forest")
129
+
130
+ # EVALUATOR
131
+ prompt_evaluator="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
132
+ You are an evaluator retrieve arima_prediction and arima mean average error from forecasting expert arima and rf_prediction and mean average error for random forest from forecasting expert random forest\
133
+ print final prediction number.
134
+ Next, compare prediction price and current price to provide reccommendation if he should buy/sell/hold the stock. \
135
+ Expected output: one value for the prediction, explain why you have selected this value, reccommendation buy or sell stock and why.\
136
+ <|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
137
+
138
+ tools_evaluate=evaluator.evaluator_tools()
139
+ code_evaluate = create_agent(
140
+ llm,
141
+ tools_evaluate,
142
+ prompt_evaluator,
143
+ )
144
+ evaluate = functools.partial(agent_node, agent=code_evaluate, name="Evaluator")
145
+
146
+ #Stock Sentiment Evaluator
147
+ prompt_sentiment_evaluator="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
148
+ You are a stock sentiment evaluator, that takes in a stock ticker and
149
+ then using your StockSentimentAnalysis tool retrieve news for the stock based on the configured data range starting today and their corresponding sentiment,
150
+ alongwith the most dominant sentiment for the stock\
151
+ Expected output: List ALL stock news and their sentiment from the StockSentimentAnalysis tool response, and the dominant sentiment for the stock also in StockSentimentAnalysis tool response as is without change\
152
+ Also ensure you use the tool only once and do not make changes to messages
153
+ Also you are not to change the response from the tool\
154
+ <|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
155
+
156
+ tools_sentiment_evaluator=stock_sentiment_evalutor.sentimental_analysis_tools()
157
+ sentiment_evaluator = create_agent(
158
+ llm,
159
+ tools_sentiment_evaluator,
160
+ prompt_sentiment_evaluator,
161
+ )
162
+ evaluate_sentiment = functools.partial(agent_node, agent=sentiment_evaluator, name="Sentiment_Evaluator")
163
+
164
+ # Investment advisor
165
+ prompt_inv_advisor="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
166
+ Provide personalized investment advice and recommendations.\
167
+ Consider user input message for the latest news on the stock.\
168
+ Provide overall sentiment of the news Positive/Negative/Neutral, and recommend if the user should invest in such stock.\
169
+ MUST finish the analysis with a summary on the latest news from the user input on the stock!\
170
+ <|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
171
+
172
+ tools_reccommend=investment_advisor.investment_advisor_tools()
173
+
174
+ code_inv_advisor = create_agent(
175
+ llm,
176
+ tools_reccommend,
177
+ prompt_inv_advisor,
178
+ )
179
+
180
+ reccommend = functools.partial(agent_node, agent=code_inv_advisor, name="Investment_advisor")
181
+
182
+ workflow_data = StateGraph(AgentState)
183
+ workflow_data.add_node("Data_analyst", get_historical_prices)
184
+ workflow_data.set_entry_point("Data_analyst")
185
+ graph_data=workflow_data.compile()
186
+
187
+ workflow = StateGraph(AgentState)
188
+ #workflow.add_node("Data_analyst", get_historical_prices)
189
+ workflow.add_node("Forecasting_expert_random_forest", predict_future_prices_random_forest)
190
+ workflow.add_node("Forecasting_expert_ARIMA", predict_future_prices_arima)
191
+ workflow.add_node("Evaluator", evaluate)
192
+
193
+
194
+ # Finally, add entrypoint
195
+ workflow.set_entry_point("Forecasting_expert_random_forest")
196
+ workflow.add_edge("Forecasting_expert_random_forest","Forecasting_expert_ARIMA")
197
+ workflow.add_edge("Forecasting_expert_ARIMA","Evaluator")
198
+ workflow.add_edge("Evaluator",END)
199
+ graph = workflow.compile()
200
+
201
+ #Print graph
202
+ #graph.get_graph().print_ascii()
203
+
204
+ memory = MemorySaver()
205
+ workflow_news = StateGraph(AgentState)
206
+ workflow_news.add_node("Investment_advisor", reccommend)
207
+ workflow_news.set_entry_point("Investment_advisor")
208
+ workflow_news.add_edge("Investment_advisor",END)
209
+ graph_news = workflow_news.compile(checkpointer=memory)
210
+
211
+ from langchain_core.runnables import RunnableConfig
212
+ @cl.on_chat_start
213
+ async def on_chat_start():
214
+ cl.user_session.set("counter", 0)
215
+ # Sending an image with the local file path
216
+ elements = [
217
+ cl.Image(name="image1", display="inline", path="./stock_image1.png",size="large")
218
+ ]
219
+ await cl.Message(content="Hello there, Welcome to ##StockSavyy!", elements=elements).send()
220
+ await cl.Message(content="Tell me the stockticker you want me to analyze.").send()
221
+
222
+ @cl.on_message
223
+ async def main(message: cl.Message):
224
+ #"what is the weather in sf"
225
+ counter = cl.user_session.get("counter")
226
+ counter += 1
227
+ cl.user_session.set("counter", counter)
228
+ await cl.Message(content=f"You sent {counter} message(s)!").send()
229
+ if counter==1:
230
+ inputs = {"messages": [HumanMessage(content=message.content)]}
231
+
232
+ res_data = graph_data.invoke(inputs, config=RunnableConfig(callbacks=[
233
+ cl.LangchainCallbackHandler(
234
+ to_ignore=["ChannelRead", "RunnableLambda", "ChannelWrite", "__start__", "_execute"]
235
+ # can add more into the to_ignore: "agent:edges", "call_model"
236
+ # to_keep=
237
+
238
+ )]))
239
+ #print(res_data)
240
+ await cl.Message(content=res_data["messages"][-1].content).send()
241
+ #print('ticker',str(res_data).split(">>"))
242
+ if len(str(res_data).split(">>")[1])<10:
243
+ stockticker=(str(res_data).split(">>")[1])
244
+ else:
245
+ stockticker=(str(res_data).split(">>")[0])
246
+ #print('ticker1',stockticker)
247
+ print('here')
248
+ df=u.get_stock_price(stockticker)
249
+ df_history=u.historical_stock_prices(stockticker,90)
250
+ df_history_to_msg1=eval(str(list((pd.DataFrame(df_history['Close'].values.reshape(1, -1)[0]).T).iloc[0,:])))
251
+ inputs_all = {"messages": [HumanMessage(content=(f"Predict {stockticker}, historical prices are: {df_history_to_msg1}."))]}
252
+ #print(inputs_all)
253
+ df_history=pd.DataFrame(df_history)
254
+ df_history['stockticker']=np.repeat(stockticker,len(df_history))
255
+ df_history.to_csv('df_history.csv')
256
+
257
+ res = graph.invoke(inputs_all, config=RunnableConfig(callbacks=[
258
+ cl.LangchainCallbackHandler(
259
+ to_ignore=["ChannelRead", "RunnableLambda", "ChannelWrite", "__start__", "_execute"]
260
+ # can add more into the to_ignore: "agent:edges", "call_model"
261
+ # to_keep=
262
+
263
+ )]))
264
+ await cl.Message(content= res["messages"][-2].content + '\n\n' + res["messages"][-1].content).send()
265
+
266
+ df_history=pd.read_csv('df_history.csv')
267
+ stockticker=str(df_history['stockticker'][0])
268
+ df_search=search_news(stockticker)
269
+ with open('search_news.txt', 'w') as a:
270
+ a.write(str(df_search[0:10]))
271
+ file = open("search_news.txt", "r")
272
+ df_search = file.read()
273
+ print(stockticker)
274
+
275
+ config = {"configurable": {"thread_id": "1"}}
276
+ inputs_news = {"messages": [HumanMessage(content=(f"Summarize articles for {stockticker} to write 2 sentences about following articles: {df_search}."))]}
277
+ k=0
278
+ for event in graph_news.stream(inputs_news, config, stream_mode="values"):
279
+ k+=1
280
+ if k>1:
281
+ await cl.Message(content=event["messages"][-1].content).send()
282
+
283
+
284
+ if counter==1:
285
+ df=u.historical_stock_prices(stockticker,90)
286
+ df=u.calculate_MACD(df, fast_period=12, slow_period=26, signal_period=9)
287
+ fig = u.plot_macd2(df)
288
+
289
+ if fig:
290
+ elements = [cl.Pyplot(name="plot", figure=fig, display="inline",size="large"),
291
+ ]
292
+ await cl.Message(
293
+ content="Here is the MACD plot",
294
+ elements=elements,
295
+ ).send()
296
+ else:
297
+ await cl.Message(
298
+ content="Failed to generate the MACD plot."
299
+ ).send()
300
+
301
+
302
+
303
+
df_history.csv DELETED
@@ -1,63 +0,0 @@
1
- Date,Open,High,Low,Close,Volume,Dividends,Stock Splits,stockticker
2
- 2024-04-22 00:00:00-04:00,399.3596471827562,402.1246793258712,395.03745670124425,400.2380676269531,20286900,0.0,0.0,MSFT
3
- 2024-04-23 00:00:00-04:00,403.51216021293357,407.4650522060062,402.33429210205253,406.836181640625,15734500,0.0,0.0,MSFT
4
- 2024-04-24 00:00:00-04:00,408.82258607970806,411.72735028943725,406.0475926794115,408.323486328125,15065300,0.0,0.0,MSFT
5
- 2024-04-25 00:00:00-04:00,393.32054400787314,399.1700088625431,387.3313470651067,398.321533203125,40586500,0.0,0.0,MSFT
6
- 2024-04-26 00:00:00-04:00,411.4279132786848,412.25640548421114,405.02945064216703,405.58843994140625,29694700,0.0,0.0,MSFT
7
- 2024-04-29 00:00:00-04:00,404.52035539531056,405.5884361925186,398.4712687423875,401.5257568359375,19582100,0.0,0.0,MSFT
8
- 2024-04-30 00:00:00-04:00,400.76710737423014,401.4359144425664,388.4693126899027,388.6289978027344,28781400,0.0,0.0,MSFT
9
- 2024-05-01 00:00:00-04:00,391.9030904630616,400.9967037344784,389.6072438016868,394.2289123535156,23562500,0.0,0.0,MSFT
10
- 2024-05-02 00:00:00-04:00,396.94401914412265,399.20992105581087,393.9394288835304,397.1236877441406,17709400,0.0,0.0,MSFT
11
- 2024-05-03 00:00:00-04:00,401.55570709720826,406.4169339510819,401.13644988960164,405.9278259277344,17446700,0.0,0.0,MSFT
12
- 2024-05-06 00:00:00-04:00,408.024048156178,413.1847226485525,405.63833666603693,412.7954406738281,16996600,0.0,0.0,MSFT
13
- 2024-05-07 00:00:00-04:00,413.91342570011614,413.92341744357753,408.35344694069664,408.6029968261719,20018200,0.0,0.0,MSFT
14
- 2024-05-08 00:00:00-04:00,407.4351142805277,411.48780192255407,405.97772103822234,409.80084228515625,11792300,0.0,0.0,MSFT
15
- 2024-05-09 00:00:00-04:00,409.8307875446534,411.97691043744567,408.363433019907,411.57763671875,14689700,0.0,0.0,MSFT
16
- 2024-05-10 00:00:00-04:00,412.1965086797442,414.6321179246016,411.05854661467066,413.9932556152344,13402300,0.0,0.0,MSFT
17
- 2024-05-13 00:00:00-04:00,417.2573820335048,417.5967662074119,410.08032520369875,412.97509765625,15440200,0.0,0.0,MSFT
18
- 2024-05-14 00:00:00-04:00,411.2781631216723,416.73831581889846,410.8090081198034,415.80999755859375,15109300,0.0,0.0,MSFT
19
- 2024-05-15 00:00:00-04:00,417.8999938964844,423.80999755859375,417.2699890136719,423.0799865722656,22239500,0.75,0.0,MSFT
20
- 2024-05-16 00:00:00-04:00,421.79998779296875,425.4200134277344,420.3500061035156,420.989990234375,17530100,0.0,0.0,MSFT
21
- 2024-05-17 00:00:00-04:00,422.5400085449219,422.9200134277344,418.0299987792969,420.2099914550781,15352200,0.0,0.0,MSFT
22
- 2024-05-20 00:00:00-04:00,420.2099914550781,426.7699890136719,419.989990234375,425.3399963378906,16272100,0.0,0.0,MSFT
23
- 2024-05-21 00:00:00-04:00,426.8299865722656,432.9700012207031,424.8500061035156,429.0400085449219,21453300,0.0,0.0,MSFT
24
- 2024-05-22 00:00:00-04:00,430.0899963378906,432.4100036621094,427.1300048828125,430.5199890136719,18073700,0.0,0.0,MSFT
25
- 2024-05-23 00:00:00-04:00,432.9700012207031,433.6000061035156,425.4200134277344,427.0,17211700,0.0,0.0,MSFT
26
- 2024-05-24 00:00:00-04:00,427.19000244140625,431.05999755859375,424.4100036621094,430.1600036621094,11845800,0.0,0.0,MSFT
27
- 2024-05-28 00:00:00-04:00,429.6300048828125,430.82000732421875,426.6000061035156,430.32000732421875,15718000,0.0,0.0,MSFT
28
- 2024-05-29 00:00:00-04:00,425.69000244140625,430.94000244140625,425.69000244140625,429.1700134277344,15517100,0.0,0.0,MSFT
29
- 2024-05-30 00:00:00-04:00,424.29998779296875,424.29998779296875,414.239990234375,414.6700134277344,28424800,0.0,0.0,MSFT
30
- 2024-05-31 00:00:00-04:00,416.75,416.75,404.510009765625,415.1300048828125,47995300,0.0,0.0,MSFT
31
- 2024-06-03 00:00:00-04:00,415.5299987792969,416.42999267578125,408.9200134277344,413.5199890136719,17484700,0.0,0.0,MSFT
32
- 2024-06-04 00:00:00-04:00,412.42999267578125,416.44000244140625,409.67999267578125,416.07000732421875,14348900,0.0,0.0,MSFT
33
- 2024-06-05 00:00:00-04:00,417.80999755859375,424.0799865722656,416.29998779296875,424.010009765625,16988000,0.0,0.0,MSFT
34
- 2024-06-06 00:00:00-04:00,424.010009765625,425.30999755859375,420.5799865722656,424.5199890136719,14861300,0.0,0.0,MSFT
35
- 2024-06-07 00:00:00-04:00,426.20001220703125,426.2799987792969,423.0,423.8500061035156,13621700,0.0,0.0,MSFT
36
- 2024-06-10 00:00:00-04:00,424.70001220703125,428.0799865722656,423.8900146484375,427.8699951171875,14003000,0.0,0.0,MSFT
37
- 2024-06-11 00:00:00-04:00,425.4800109863281,432.82000732421875,425.25,432.67999267578125,14551100,0.0,0.0,MSFT
38
- 2024-06-12 00:00:00-04:00,435.32000732421875,443.3999938964844,433.25,441.05999755859375,22366200,0.0,0.0,MSFT
39
- 2024-06-13 00:00:00-04:00,440.8500061035156,443.3900146484375,439.3699951171875,441.5799865722656,15960600,0.0,0.0,MSFT
40
- 2024-06-14 00:00:00-04:00,438.2799987792969,443.1400146484375,436.7200012207031,442.57000732421875,13582000,0.0,0.0,MSFT
41
- 2024-06-17 00:00:00-04:00,442.5899963378906,450.94000244140625,440.7200012207031,448.3699951171875,20790000,0.0,0.0,MSFT
42
- 2024-06-18 00:00:00-04:00,449.7099914550781,450.1400146484375,444.8900146484375,446.3399963378906,17112500,0.0,0.0,MSFT
43
- 2024-06-20 00:00:00-04:00,446.29998779296875,446.5299987792969,441.2699890136719,445.70001220703125,19877400,0.0,0.0,MSFT
44
- 2024-06-21 00:00:00-04:00,447.3800048828125,450.5799865722656,446.510009765625,449.7799987792969,34486200,0.0,0.0,MSFT
45
- 2024-06-24 00:00:00-04:00,449.79998779296875,452.75,446.4100036621094,447.6700134277344,15913700,0.0,0.0,MSFT
46
- 2024-06-25 00:00:00-04:00,448.25,451.4200134277344,446.75,450.95001220703125,16747500,0.0,0.0,MSFT
47
- 2024-06-26 00:00:00-04:00,449.0,453.6000061035156,448.19000244140625,452.1600036621094,16507000,0.0,0.0,MSFT
48
- 2024-06-27 00:00:00-04:00,452.17999267578125,456.1700134277344,451.7699890136719,452.8500061035156,14806300,0.0,0.0,MSFT
49
- 2024-06-28 00:00:00-04:00,453.07000732421875,455.3800048828125,446.4100036621094,446.95001220703125,28362300,0.0,0.0,MSFT
50
- 2024-07-01 00:00:00-04:00,448.6600036621094,457.3699951171875,445.6600036621094,456.7300109863281,17662800,0.0,0.0,MSFT
51
- 2024-07-02 00:00:00-04:00,453.20001220703125,459.5899963378906,453.1099853515625,459.2799987792969,13979800,0.0,0.0,MSFT
52
- 2024-07-03 00:00:00-04:00,458.19000244140625,461.0199890136719,457.8800048828125,460.7699890136719,9932800,0.0,0.0,MSFT
53
- 2024-07-05 00:00:00-04:00,459.6099853515625,468.3500061035156,458.9700012207031,467.55999755859375,16000300,0.0,0.0,MSFT
54
- 2024-07-08 00:00:00-04:00,466.54998779296875,467.70001220703125,464.4599914550781,466.239990234375,12962300,0.0,0.0,MSFT
55
- 2024-07-09 00:00:00-04:00,467.0,467.3299865722656,458.0,459.5400085449219,17207200,0.0,0.0,MSFT
56
- 2024-07-10 00:00:00-04:00,461.2200012207031,466.4599914550781,458.8599853515625,466.25,18196100,0.0,0.0,MSFT
57
- 2024-07-11 00:00:00-04:00,462.9800109863281,464.7799987792969,451.54998779296875,454.70001220703125,23111200,0.0,0.0,MSFT
58
- 2024-07-12 00:00:00-04:00,454.3299865722656,456.3599853515625,450.6499938964844,453.54998779296875,16324300,0.0,0.0,MSFT
59
- 2024-07-15 00:00:00-04:00,453.29998779296875,457.260009765625,451.42999267578125,453.9599914550781,14429400,0.0,0.0,MSFT
60
- 2024-07-16 00:00:00-04:00,454.2200012207031,454.29998779296875,446.6600036621094,449.5199890136719,17175700,0.0,0.0,MSFT
61
- 2024-07-17 00:00:00-04:00,442.5899963378906,444.8500061035156,439.17999267578125,443.5199890136719,21778000,0.0,0.0,MSFT
62
- 2024-07-18 00:00:00-04:00,444.3399963378906,444.6499938964844,434.3999938964844,440.3699951171875,20794800,0.0,0.0,MSFT
63
- 2024-07-19 00:00:00-04:00,433.1000061035156,441.1400146484375,432.0,437.1099853515625,20862400,0.0,0.0,MSFT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
good_day.jpg ADDED
historicalprices.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
2
+ from bs4 import BeautifulSoup
3
+ import re
4
+
5
+ def get_historical_prices(product_url):
6
+ headers = {
7
+ 'User-Agent': 'Your User Agent'
8
+ }
9
+ response = requests.get(product_url, headers=headers)
10
+
11
+ if response.status_code == 200:
12
+ soup = BeautifulSoup(response.content, 'html.parser')
13
+ price_data = {}
14
+
15
+ # Extract historical price data
16
+ price_blocks = soup.find_all('div', class_='price-history__row')
17
+
18
+ for block in price_blocks:
19
+ date = block.find('span', class_='price-history__date').text.strip()
20
+ price = block.find('span', class_='price-history__price').text.strip()
21
+ price_data[date] = price
22
+
23
+ return price_data
24
+ else:
25
+ print(f"Failed to retrieve data. Status code: {response.status_code}")
26
+ return None
27
+
28
+ # Example usage
29
+ if __name__ == '__main__':
30
+ product_url = 'https://camelcamelcamel.com/product/ASIN'
31
+ historical_prices = get_historical_prices(product_url)
32
+
33
+ if historical_prices:
34
+ print("Historical Prices:")
35
+ for date, price in historical_prices.items():
36
+ print(f"{date}: {price}")
homepage.png ADDED
requirements.txt CHANGED
@@ -21,4 +21,5 @@ alpaca_trade_api
21
  transformers
22
  pandas
23
  GoogleNews
24
- streamlit
 
 
21
  transformers
22
  pandas
23
  GoogleNews
24
+ streamlit
25
+ googlenews
search_news.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ ['Investing in Amazon Stock (AMZN)', 'Amazon.com, Inc. (NASDAQ:AMZN) Shares Could Be 40% Below Their Intrinsic Value Estimate', 'Why Amazon Stock Is the Biggest Bargain After Amazon Prime Day', 'Is Amazon Stock A Buy As Analysts Project Strong Prime Day Sales?', "Amazon cracks down on 'coffee badging' employees by tracking individual hours spent in the office", 'Amazon Stock (AMZN) Price Prediction and Forecast 2025-2030', 'Amazon CEO Andy Jassy says being ‘ravenous’ about one thing will determine if your career is a success', 'Amazon says this year’s Prime Day was its biggest ever', 'Amazon Prime Day 2024 returns this July', '4 stocks to watch on Thursday: NFLX, AMZN and more']
sentiment_analysis/__init__.py ADDED
File without changes
sentiment_analysis/client.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from alpaca_trade_api import REST
2
+ import os
3
+ from dotenv import load_dotenv
4
+
5
+
6
+ class AlpacaNewsFetcher:
7
+ """
8
+ A class for fetching news articles related to a specific stock from Alpaca API.
9
+
10
+ Attributes:
11
+ - api_key (str): Alpaca API key for authentication.
12
+ - api_secret (str): Alpaca API secret for authentication.
13
+ - rest_client (alpaca_trade_api.REST): Alpaca REST API client.
14
+ """
15
+
16
+ def __init__(self, api_key, api_secret):
17
+ """
18
+ Initializes the AlpacaNewsFetcher object.
19
+
20
+ Args:
21
+ - api_key (str): Alpaca API key for authentication.
22
+ - api_secret (str): Alpaca API secret for authentication.
23
+ """
24
+ self.api_key = api_key
25
+ self.api_secret = api_secret
26
+ self.rest_client = REST(api_key, api_secret)
27
+
28
+ load_dotenv()
29
+ self.no_of_newsarticles_to_fetch = os.environ["NO_OF_NEWSARTICLES_TO_FETCH"]
30
+
31
+ def fetch_news(self, symbol, start_date, end_date):
32
+ """
33
+ Fetches news articles for a given stock symbol within a specified date range.
34
+
35
+ Args:
36
+ - symbol (str): Stock symbol for which news articles are to be fetched (e.g., "AAPL").
37
+ - start_date (str): Start date of the range in the format "YYYY-MM-DD".
38
+ - end_date (str): End date of the range in the format "YYYY-MM-DD".
39
+
40
+ Returns:
41
+ - list: A list of dictionaries containing relevant information for each news article.
42
+ """
43
+ news_articles = self.rest_client.get_news(symbol, start_date, end_date, limit=self.no_of_newsarticles_to_fetch )
44
+ formatted_news = []
45
+ print("-----------------------------------------------------")
46
+ print(len(news_articles))
47
+ print("-----------------------------------------------------")
48
+
49
+ for article in news_articles:
50
+ summary = article.summary
51
+ title = article.headline
52
+ timestamp = article.created_at
53
+
54
+ relevant_info = {
55
+ 'timestamp': timestamp,
56
+ 'title': title,
57
+ 'summary': summary
58
+ }
59
+
60
+ formatted_news.append(relevant_info)
61
+
62
+ return formatted_news
63
+
sentiment_analysis/requirements.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ alpaca_trade_api
2
+ transformers
3
+ einops
4
+ accelerate
5
+ langchain
6
+ bitsandbytes
7
+ #sentencepeice
8
+ openai
9
+ backtrader
10
+ yfinance
11
+ pandas
12
+ pyfolio
13
+ python-dotenv
sentiment_analysis/sentiment_analysis_pipeline.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # !pip install transformers
2
+ from transformers import pipeline
3
+ from client import AlpacaNewsFetcher
4
+ from alpaca_trade_api import REST
5
+ import os
6
+ from dotenv import load_dotenv
7
+ import pandas as pd
8
+ import matplotlib.pyplot as plt
9
+ from collections import defaultdict
10
+ from datetime import date
11
+
12
+
13
+
14
+ class NewsSentimentAnalysis:
15
+ """
16
+ A class for sentiment analysis of news articles using the Transformers library.
17
+
18
+ Attributes:
19
+ - classifier (pipeline): Sentiment analysis pipeline from Transformers.
20
+ """
21
+
22
+ def __init__(self):
23
+ """
24
+ Initializes the NewsSentimentAnalysis object.
25
+ """
26
+ self.classifier = pipeline('sentiment-analysis')
27
+
28
+ def analyze_sentiment(self, news_article):
29
+ """
30
+ Analyzes the sentiment of a given news article.
31
+
32
+ Args:
33
+ - news_article (dict): Dictionary containing 'summary', 'headline', and 'created_at' keys.
34
+
35
+ Returns:
36
+ - dict: A dictionary containing sentiment analysis results.
37
+ """
38
+ summary = news_article['summary']
39
+ title = news_article['title']
40
+ timestamp = news_article['timestamp']
41
+
42
+ relevant_text = summary + title
43
+ sentiment_result = self.classifier(relevant_text)
44
+
45
+ analysis_result = {
46
+ 'timestamp': timestamp,
47
+ 'title': title,
48
+ 'summary': summary,
49
+ 'sentiment': sentiment_result
50
+ }
51
+
52
+ return analysis_result
53
+
54
+ def plot_sentiment_graph(self, sentiment_analysis_result):
55
+ """
56
+ Plots a sentiment analysis graph
57
+
58
+ Args:
59
+ - sentiment_analysis_result): (dict): Dictionary containing 'summary', 'headline', and 'created_at' keys.
60
+
61
+ Returns:
62
+ - dict: A dictionary containing sentiment analysis results.
63
+ """
64
+ df = pd.DataFrame(sentiment_analysis_result)
65
+ df['Timestamp'] = pd.to_datetime(df['Timestamp'])
66
+ df['Date'] = df['Timestamp'].dt.date
67
+
68
+ #Group by Date, sentiment value count
69
+ grouped = df.groupby(by='Date')['Sentiment'].value_counts()
70
+ grouped.plot.pie()
71
+
72
+
73
+ def get_dominant_sentiment (self, sentiment_analysis_result):
74
+ """
75
+ Returns overall sentiment, negative or positive or neutral depending on the count of negative sentiment vs positive sentiment
76
+
77
+ Args:
78
+ - sentiment_analysis_result): (dict): Dictionary containing 'summary', 'headline', and 'created_at' keys.
79
+
80
+ Returns:
81
+ - dict: A dictionary containing sentiment analysis results.
82
+ """
83
+ df = pd.DataFrame(sentiment_analysis_result)
84
+ df['Timestamp'] = pd.to_datetime(df['Timestamp'])
85
+ df['Date'] = df['Timestamp'].dt.date
86
+
87
+ #Group by Date, sentiment value count
88
+ grouped = df.groupby(by='Date')['Sentiment'].value_counts()
89
+ df = pd.DataFrame(list(grouped.items()), columns=['Sentiment', 'count'])
90
+ df['date'] = df['Sentiment'].apply(lambda x: x[0])
91
+ df['sentiment'] = df['Sentiment'].apply(lambda x: x[1])
92
+ df.drop('Sentiment', axis=1, inplace=True)
93
+ result = df.groupby('sentiment')['count'].sum().reset_index()
94
+
95
+ # Determine the sentiment with the most count
96
+ dominant_sentiment = result.loc[result['count'].idxmax()]
97
+
98
+ return dominant_sentiment
99
+
100
+
101
+
102
+ #starting point of the program
103
+ if __name__ == '__main__':
104
+ # Example Usage:
105
+ # Initialize the AlpacaNewsFetcher object
106
+
107
+ #Load Alpaca Key and Secret from environment.
108
+ load_dotenv()
109
+ api_key = os.environ["ALPACA_API_KEY"]
110
+ api_secret = os.environ["ALPACA_SECRET"]
111
+
112
+ #Initialize AlpacaNewsFetcher, a class for fetching news articles related to a specific stock from Alpaca API.
113
+ news_fetcher = AlpacaNewsFetcher(api_key, api_secret)
114
+
115
+ # Fetch news (contains - title of the news, timestamp and summary) for AAPL from 2021-01-01 to 2021-12-31
116
+ news_data = news_fetcher.fetch_news("AAPL", "2021-01-01", "2021-12-31")
117
+
118
+ # Initialize the NewsSentimentAnalysis object
119
+ news_sentiment_analyzer = NewsSentimentAnalysis()
120
+ analysis_result = []
121
+ # Assume 'news_data' is a list of news articles (each as a dictionary)
122
+ for article in news_data:
123
+ sentiment_analysis_result = news_sentiment_analyzer.analyze_sentiment(article)
124
+
125
+ # Display sentiment analysis results
126
+ """ print(f'Timestamp: {sentiment_analysis_result["timestamp"]}, '
127
+ f'Title: {sentiment_analysis_result["title"]}, '
128
+ f'Summary: {sentiment_analysis_result["summary"]}')
129
+
130
+ print(f'Sentiment: {sentiment_analysis_result["sentiment"]}', '\n') """
131
+
132
+ #Extracting timestamp of article and sentiment of article for graphing
133
+ result = {
134
+ 'Timestamp': sentiment_analysis_result["timestamp"],
135
+ 'News- Title:Summary': sentiment_analysis_result["title"] + sentiment_analysis_result["summary"],
136
+ 'Sentiment': sentiment_analysis_result["sentiment"][0]['label']
137
+ }
138
+
139
+ analysis_result.append(result)
140
+
141
+ #Graph dominant sentiment based on sentiment analysis data of news articles
142
+ dominant_sentiment = news_sentiment_analyzer.get_dominant_sentiment(analysis_result)
143
+
144
+ final_result = {
145
+ 'Sentiment-analysis-result' : analysis_result,
146
+ 'Dominant-sentiment' : dominant_sentiment['sentiment']
147
+ }
148
+
149
+ print(final_result)
150
+
151
+
tools/data_analyst.py CHANGED
@@ -64,7 +64,11 @@ def data_analyst_tools():
64
  func=StockPriceTool,
65
  args_schema=StockPriceCheckInput,
66
  description="Function to get current stock prices.",
 
67
  ),
 
 
 
68
  # StructuredTool.from_function(
69
  # func=HistoricalStockPricesTool,
70
  # args_schema=HistoricalStockPricesInput,
 
64
  func=StockPriceTool,
65
  args_schema=StockPriceCheckInput,
66
  description="Function to get current stock prices.",
67
+ <<<<<<< HEAD
68
  ),
69
+ =======
70
+ )
71
+ >>>>>>> 594c18622dd698f1854229dda280817492475d75
72
  # StructuredTool.from_function(
73
  # func=HistoricalStockPricesTool,
74
  # args_schema=HistoricalStockPricesInput,
tools/investment_advisor.py CHANGED
@@ -5,7 +5,10 @@ from langchain.tools import StructuredTool
5
  import yfinance as yf
6
  from typing import List
7
  from datetime import datetime,timedelta
 
8
  import pandas as pd
 
 
9
 
10
  def investment_advisor_tools():
11
 
@@ -31,6 +34,7 @@ def investment_advisor_tools():
31
 
32
  args_schema: Optional[Type[BaseModel]] = newsSummaryInput
33
 
 
34
  def analyze_prices():
35
  """Take historical prices, analyze them and answer user's questions."""
36
  df_prices=pd.read_csv('../df_history.csv')
@@ -52,17 +56,23 @@ def investment_advisor_tools():
52
  raise NotImplementedError("This tool does not support async")
53
 
54
  args_schema: Optional[Type[BaseModel]] = pricesInput
 
 
 
55
 
56
  tools_reccommend = [
57
  StructuredTool.from_function(
58
  func=newsSummaryTool,
59
  args_schema=newsSummaryInput,
60
  description="Summarize articles.",
 
61
  ),
62
  StructuredTool.from_function(
63
  func=pricesTool,
64
  args_schema=pricesInput,
65
  description="Analyze stock prices.",
 
 
66
  )
67
  ]
68
  return tools_reccommend
 
5
  import yfinance as yf
6
  from typing import List
7
  from datetime import datetime,timedelta
8
+ <<<<<<< HEAD
9
  import pandas as pd
10
+ =======
11
+ >>>>>>> 594c18622dd698f1854229dda280817492475d75
12
 
13
  def investment_advisor_tools():
14
 
 
34
 
35
  args_schema: Optional[Type[BaseModel]] = newsSummaryInput
36
 
37
+ <<<<<<< HEAD
38
  def analyze_prices():
39
  """Take historical prices, analyze them and answer user's questions."""
40
  df_prices=pd.read_csv('../df_history.csv')
 
56
  raise NotImplementedError("This tool does not support async")
57
 
58
  args_schema: Optional[Type[BaseModel]] = pricesInput
59
+ =======
60
+
61
+ >>>>>>> 594c18622dd698f1854229dda280817492475d75
62
 
63
  tools_reccommend = [
64
  StructuredTool.from_function(
65
  func=newsSummaryTool,
66
  args_schema=newsSummaryInput,
67
  description="Summarize articles.",
68
+ <<<<<<< HEAD
69
  ),
70
  StructuredTool.from_function(
71
  func=pricesTool,
72
  args_schema=pricesInput,
73
  description="Analyze stock prices.",
74
+ =======
75
+ >>>>>>> 594c18622dd698f1854229dda280817492475d75
76
  )
77
  ]
78
  return tools_reccommend