Spaces:
Running
Running
import easyocr | |
import numpy as np | |
import cv2 | |
import re | |
reader = easyocr.Reader(['en'], gpu=False) | |
def extract_weight_from_image(pil_img): | |
try: | |
img = np.array(pil_img) | |
# Resize image for consistency | |
if img.shape[1] > 1000: | |
img = cv2.resize(img, (1000, int(img.shape[0] * 1000 / img.shape[1]))) | |
# Convert to grayscale | |
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) | |
# Upscale image | |
gray = cv2.resize(gray, None, fx=4, fy=4, interpolation=cv2.INTER_LINEAR) | |
# Histogram Equalization and slight blur | |
gray = cv2.equalizeHist(gray) | |
blurred = cv2.GaussianBlur(gray, (3, 3), 0) | |
# Adaptive threshold | |
thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, | |
cv2.THRESH_BINARY, 11, 2) | |
# Invert if needed | |
white_ratio = np.mean(thresh > 127) | |
if white_ratio < 0.5: | |
thresh = cv2.bitwise_not(thresh) | |
# OCR | |
result = reader.readtext(thresh, detail=0) | |
print("🧠 OCR Raw Output:", result) | |
combined_text = " ".join(result).strip() | |
# Extract number | |
match = re.search(r"(\d{1,4}(?:\.\d{1,2})?)", combined_text) | |
if match: | |
weight = match.group(1) | |
return f"{weight} kg", 100.0 | |
else: | |
return "No weight detected kg", 0.0 | |
except Exception as e: | |
print("❌ OCR Error:", e) | |
return f"Error: {str(e)}", 0.0 | |