AutoWeightLogger1 / ocr_engine.py
Sanjayraju30's picture
Update ocr_engine.py
0e2ed11 verified
raw
history blame
14.5 kB
import pytesseract
import numpy as np
import cv2
import re
import logging
from datetime import datetime
import os
from PIL import Image
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Directory for debug images
DEBUG_DIR = "debug_images"
os.makedirs(DEBUG_DIR, exist_ok=True)
def save_debug_image(img, filename_suffix, prefix=""):
"""Save image to debug directory with timestamp."""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
filename = os.path.join(DEBUG_DIR, f"{prefix}{timestamp}_{filename_suffix}.png")
if isinstance(img, Image.Image):
img.save(filename)
elif len(img.shape) == 3:
cv2.imwrite(filename, cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
else:
cv2.imwrite(filename, img)
logging.info(f"Saved debug image: {filename}")
def estimate_brightness(img):
"""Estimate image brightness."""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
return np.mean(gray)
def preprocess_image(img):
"""Preprocess image with aggressive contrast and noise handling."""
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
brightness = estimate_brightness(img)
# Maximum CLAHE with adjusted clip for better digit enhancement
clahe_clip = 12.0 if brightness < 80 else 8.0
clahe = cv2.createCLAHE(clipLimit=clahe_clip, tileGridSize=(4, 4))
enhanced = clahe.apply(gray)
save_debug_image(enhanced, "01_preprocess_clahe")
# Stronger edge-preserving blur
blurred = cv2.bilateralFilter(enhanced, 7, 100, 100)
save_debug_image(blurred, "02_preprocess_blur")
# Adaptive thresholding with smaller blocks
block_size = max(3, min(11, int(img.shape[0] / 40) * 2 + 1))
thresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, block_size, 2)
# Morphological operations for robust digit segmentation
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1)
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=6)
save_debug_image(thresh, "03_preprocess_morph")
return thresh, enhanced
def correct_rotation(img):
"""Correct image rotation using edge detection."""
try:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 15, 60, apertureSize=3)
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=20, minLineLength=10, maxLineGap=3)
if lines is not None:
angles = [np.arctan2(line[0][3] - line[0][1], line[0][2] - line[0][0]) * 180 / np.pi for line in lines]
angle = np.median(angles)
if abs(angle) > 0.2:
h, w = img.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, angle, 1.0)
img = cv2.warpAffine(img, M, (w, h))
save_debug_image(img, "00_rotated_image")
logging.info(f"Applied rotation: {angle:.2f} degrees")
return img
except Exception as e:
logging.error(f"Rotation correction failed: {str(e)}")
return img
def detect_roi(img):
"""Detect region of interest with flexible contour filtering."""
try:
save_debug_image(img, "04_original")
thresh, enhanced = preprocess_image(img)
brightness_map = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
block_sizes = [max(3, min(11, int(img.shape[0] / s) * 2 + 1)) for s in [4, 8, 12]]
valid_contours = []
img_area = img.shape[0] * img.shape[1]
for block_size in block_sizes:
temp_thresh = cv2.adaptiveThreshold(enhanced, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
cv2.THRESH_BINARY_INV, block_size, 2)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
temp_thresh = cv2.morphologyEx(temp_thresh, cv2.MORPH_CLOSE, kernel, iterations=6)
save_debug_image(temp_thresh, f"05_roi_threshold_block{block_size}")
contours, _ = cv2.findContours(temp_thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for c in contours:
area = cv2.contourArea(c)
x, y, w, h = cv2.boundingRect(c)
roi_brightness = np.mean(brightness_map[y:y+h, x:x+w])
aspect_ratio = w / h
if (150 < area < (img_area * 0.8) and
0.15 <= aspect_ratio <= 12.0 and w > 40 and h > 15 and roi_brightness > 30):
valid_contours.append((c, area * roi_brightness))
logging.debug(f"Contour (block {block_size}): Area={area}, Aspect={aspect_ratio:.2f}, Brightness={roi_brightness:.2f}")
if valid_contours:
contour, _ = max(valid_contours, key=lambda x: x[1])
x, y, w, h = cv2.boundingRect(contour)
padding = max(10, min(30, int(min(w, h) * 0.25)))
x, y = max(0, x - padding), max(0, y - padding)
w, h = min(w + 2 * padding, img.shape[1] - x), min(h + 2 * padding, img.shape[0] - y)
roi_img = img[y:y+h, x:x+w]
save_debug_image(roi_img, "06_detected_roi")
logging.info(f"Detected ROI: ({x}, {y}, {w}, {h})")
return roi_img, (x, y, w, h)
logging.info("No ROI found, using full image.")
save_debug_image(img, "06_no_roi_fallback")
return img, None
except Exception as e:
logging.error(f"ROI detection failed: {str(e)}")
save_debug_image(img, "06_roi_error_fallback")
return img, None
def detect_digit_template(digit_img, brightness):
"""Digit recognition using template matching with adjusted patterns."""
try:
h, w = digit_img.shape
if h < 8 or w < 4:
logging.debug("Digit image too small for template matching.")
return None
# Adjusted digit templates for seven-segment display
digit_templates = {
'0': np.array([[1, 1, 1, 1, 1],
[1, 0, 0, 0, 1],
[1, 0, 0, 0, 1],
[1, 0, 0, 0, 1],
[1, 1, 1, 1, 1]]),
'1': np.array([[0, 0, 1, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 1, 0, 0]]),
'2': np.array([[1, 1, 1, 1, 1],
[0, 0, 0, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 0, 0, 0],
[1, 1, 1, 1, 1]]),
'3': np.array([[1, 1, 1, 1, 1],
[0, 0, 0, 1, 1],
[0, 1, 1, 1, 1],
[0, 0, 0, 1, 1],
[1, 1, 1, 1, 1]]),
'4': np.array([[1, 1, 0, 0, 1],
[1, 1, 0, 0, 1],
[1, 1, 1, 1, 1],
[0, 0, 0, 0, 1],
[0, 0, 0, 0, 1]]),
'5': np.array([[1, 1, 1, 1, 1],
[1, 1, 0, 0, 0],
[1, 1, 1, 1, 1],
[0, 0, 0, 1, 1],
[1, 1, 1, 1, 1]]),
'6': np.array([[1, 1, 1, 1, 1],
[1, 1, 0, 0, 0],
[1, 1, 1, 1, 1],
[1, 0, 0, 1, 1],
[1, 1, 1, 1, 1]]),
'7': np.array([[1, 1, 1, 1, 1],
[0, 0, 0, 0, 1],
[0, 0, 0, 0, 1],
[0, 0, 0, 0, 1],
[0, 0, 0, 0, 1]]),
'8': np.array([[1, 1, 1, 1, 1],
[1, 0, 0, 0, 1],
[1, 1, 1, 1, 1],
[1, 0, 0, 0, 1],
[1, 1, 1, 1, 1]]),
'9': np.array([[1, 1, 1, 1, 1],
[1, 0, 0, 0, 1],
[1, 1, 1, 1, 1],
[0, 0, 0, 1, 1],
[1, 1, 1, 1, 1]]),
'.': np.array([[0, 0, 0],
[0, 1, 0],
[0, 0, 0]])
}
# Resize digit_img to match template size (5x5 for digits, 3x3 for decimal)
digit_img_resized = cv2.resize(digit_img, (5, 5), interpolation=cv2.INTER_NEAREST)
best_match, best_score = None, -1
for digit, template in digit_templates.items():
if digit == '.':
digit_img_resized = cv2.resize(digit_img, (3, 3), interpolation=cv2.INTER_NEAREST)
result = cv2.matchTemplate(digit_img_resized, template, cv2.TM_CCOEFF_NORMED)
_, max_val, _, _ = cv2.minMaxLoc(result)
if max_val > 0.65 and max_val > best_score: # Lowered threshold for better match
best_score = max_val
best_match = digit
logging.debug(f"Template match: {best_match}, Score: {best_score:.2f}")
return best_match if best_score > 0.65 else None
except Exception as e:
logging.error(f"Template digit detection failed: {str(e)}")
return None
def perform_ocr(img, roi_bbox):
"""Perform OCR with Tesseract and template-based fallback."""
try:
thresh, enhanced = preprocess_image(img)
brightness = estimate_brightness(img)
pil_img = Image.fromarray(enhanced)
save_debug_image(pil_img, "07_ocr_input")
# Tesseract with flexible numeric config
custom_config = r'--oem 3 --psm 6 -c tessedit_char_whitelist=0123456789.'
text = pytesseract.image_to_string(pil_img, config=custom_config)
logging.info(f"Tesseract raw output: {text}")
# Clean and validate
text = re.sub(r"[^\d\.]", "", text)
if text.count('.') > 1:
text = text.replace('.', '', text.count('.') - 1)
text = text.strip('.')
if text and re.fullmatch(r"^\d*\.?\d*$", text):
text = text.lstrip('0') or '0'
confidence = 97.0 if len(text.replace('.', '')) >= 3 else 94.0
logging.info(f"Validated Tesseract text: {text}, Confidence: {confidence:.2f}%")
return text, confidence
# Fallback to template-based detection
logging.info("Tesseract failed, using template-based detection.")
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
digits_info = []
for c in contours:
x, y, w, h = cv2.boundingRect(c)
if w > 6 and h > 8 and 0.1 <= w/h <= 2.5: # Loosened size and aspect ratio
digits_info.append((x, x+w, y, y+h))
if digits_info:
digits_info.sort(key=lambda x: x[0])
recognized_text = ""
prev_x_max = -float('inf')
for idx, (x_min, x_max, y_min, y_max) in enumerate(digits_info):
x_min, y_min = max(0, x_min), max(0, y_min)
x_max, y_max = min(thresh.shape[1], x_max), min(thresh.shape[0], y_max)
if x_max <= x_min or y_max <= y_min:
continue
digit_crop = thresh[y_min:y_max, x_min:x_max]
save_debug_image(digit_crop, f"08_digit_crop_{idx}")
digit = detect_digit_template(digit_crop, brightness)
if digit:
recognized_text += digit
elif x_min - prev_x_max < 6 and prev_x_max != -float('inf'): # Adjusted decimal gap
recognized_text += '.'
prev_x_max = x_max
text = re.sub(r"[^\d\.]", "", recognized_text)
if text.count('.') > 1:
text = text.replace('.', '', text.count('.') - 1)
text = text.strip('.')
if text and re.fullmatch(r"^\d*\.?\d*$", text):
text = text.lstrip('0') or '0'
confidence = 92.0 if len(text.replace('.', '')) >= 3 else 89.0
logging.info(f"Validated template text: {text}, Confidence: {confidence:.2f}%")
return text, confidence
logging.info("No valid digits detected.")
return None, 0.0
except Exception as e:
logging.error(f"OCR failed: {str(e)}")
return None, 0.0
def extract_weight_from_image(pil_img):
"""Extract weight from any digital scale image."""
try:
img = np.array(pil_img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
save_debug_image(img, "00_input_image")
img = correct_rotation(img)
brightness = estimate_brightness(img)
conf_threshold = 0.75 if brightness > 100 else 0.55 # Lowered threshold
roi_img, roi_bbox = detect_roi(img)
if roi_bbox:
conf_threshold *= 1.05 if (roi_bbox[2] * roi_bbox[3]) > (img.shape[0] * img.shape[1] * 0.15) else 1.0
result, confidence = perform_ocr(roi_img, roi_bbox)
if result and confidence >= conf_threshold * 100:
try:
weight = float(result)
if 0.01 <= weight <= 1000:
logging.info(f"Detected weight: {result} kg, Confidence: {confidence:.2f}%")
return result, confidence
logging.warning(f"Weight {result} out of range.")
except ValueError:
logging.warning(f"Invalid weight format: {result}")
logging.info("Primary OCR failed, using full image fallback.")
result, confidence = perform_ocr(img, None)
if result and confidence >= conf_threshold * 0.8 * 100: # Adjusted fallback threshold
try:
weight = float(result)
if 0.01 <= weight <= 1000:
logging.info(f"Full image weight: {result} kg, Confidence: {confidence:.2f}%")
return result, confidence
logging.warning(f"Full image weight {result} out of range.")
except ValueError:
logging.warning(f"Invalid full image weight format: {result}")
logging.info("No valid weight detected.")
return "Not detected", 0.0
except Exception as e:
logging.error(f"Weight extraction failed: {str(e)}")
return "Not detected", 0.0