AutoWeightLogger / ocr_engine.py
Sanjayraju30's picture
Update ocr_engine.py
33069a9 verified
raw
history blame
1.47 kB
import easyocr
import numpy as np
import re
import cv2
reader = easyocr.Reader(['en'], gpu=False)
def extract_weight_from_image(pil_img):
try:
img = np.array(pil_img)
# Convert to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# Apply bilateral filter to reduce noise while keeping edges
filtered = cv2.bilateralFilter(gray, 11, 17, 17)
# Apply binary threshold
_, thresh = cv2.threshold(filtered, 150, 255, cv2.THRESH_BINARY_INV)
# Find contours
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
return "No weight detected", 0.0
# Get the largest contour assuming it's the display area
largest_contour = max(contours, key=cv2.contourArea)
x, y, w, h = cv2.boundingRect(largest_contour)
# Add padding
pad = 10
x, y = max(x - pad, 0), max(y - pad, 0)
cropped = gray[y:y+h+pad, x:x+w+pad]
# OCR on cropped area
result = reader.readtext(cropped, detail=0)
combined = " ".join(result)
print("Detected Text:", combined)
# Match weight patterns like 52.30 or 003.25
match = re.search(r"\b\d{2,4}\.?\d{0,2}\b", combined)
if match:
return match.group(), 95.0
else:
return "No weight detected", 0.0
except Exception as e:
return f"Error: {str(e)}", 0.0