SanjanaJD004's picture
Update app.py
cd48eb1
'''import gradio as gr
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
#from datasets import load_dataset
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
SAVED_MODEL_PATH = '/Users/sanjanajd/Desktop/Bart-base_Summarizer/bart_base_full_finetune_save'
model_name = "facebook/bart-base"
model = AutoModelForSeq2SeqLM.from_pretrained(SAVED_MODEL_PATH).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
#dataset = load_dataset("samsum")
dataset = load_dataset("samsum", download_mode="force_redownload")
train_data = dataset["train"]
validation_data = dataset["validation"]
test_data = dataset["test"]
def summarize(text):
inputs = tokenizer(f"Summarize dialogue >>\n {text}", return_tensors="pt", max_length=1000, truncation=True, padding="max_length").to(device)
summary_ids = model.generate(inputs.input_ids, num_beams=4, max_length=100, early_stopping=True)
summary = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids]
return summary[0]
iface = gr.Interface(
fn=summarize,
inputs=gr.inputs.Textbox(lines=10, label="Input Dialogue"),
outputs=gr.outputs.Textbox(label="Generated Summary")
)
iface.launch()'''
import gradio as gr
def greet(name):
return "Hello " + name
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
demo.launch()