Spaces:
Build error
Build error
| '''import gradio as gr | |
| from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
| #from datasets import load_dataset | |
| import torch | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| SAVED_MODEL_PATH = '/Users/sanjanajd/Desktop/Bart-base_Summarizer/bart_base_full_finetune_save' | |
| model_name = "facebook/bart-base" | |
| model = AutoModelForSeq2SeqLM.from_pretrained(SAVED_MODEL_PATH).to(device) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| #dataset = load_dataset("samsum") | |
| dataset = load_dataset("samsum", download_mode="force_redownload") | |
| train_data = dataset["train"] | |
| validation_data = dataset["validation"] | |
| test_data = dataset["test"] | |
| def summarize(text): | |
| inputs = tokenizer(f"Summarize dialogue >>\n {text}", return_tensors="pt", max_length=1000, truncation=True, padding="max_length").to(device) | |
| summary_ids = model.generate(inputs.input_ids, num_beams=4, max_length=100, early_stopping=True) | |
| summary = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids] | |
| return summary[0] | |
| iface = gr.Interface( | |
| fn=summarize, | |
| inputs=gr.inputs.Textbox(lines=10, label="Input Dialogue"), | |
| outputs=gr.outputs.Textbox(label="Generated Summary") | |
| ) | |
| iface.launch()''' | |
| import gradio as gr | |
| def greet(name): | |
| return "Hello " + name | |
| demo = gr.Interface(fn=greet, inputs="text", outputs="text") | |
| demo.launch() | |