SandraPK's picture
Upload 24 files
a4a5dbc
raw
history blame
6.97 kB
#Importing Necessary libraries
import streamlit as st
import numpy as np
from PIL import Image
from tensorflow.keras.datasets import imdb
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.applications.inception_v3 import preprocess_input
import tensorflow as tf
import pickle
from tensorflow.keras.preprocessing import sequence
# Load the tokenizer using pickle
with open(r'tokenizer_rnn.pkl', 'rb') as handle:
tokenizer_rnn = pickle.load(handle)
with open(r'tokenizer_dnn.pkl', 'rb') as handle:
tokenizer_dnn = pickle.load(handle)
with open(r'tokenizer_per.pkl', 'rb') as handle:
tokenizer_per = pickle.load(handle)
with open(r'tokenizer_backpropagation.pkl', 'rb') as handle:
tokenizer_back = pickle.load(handle)
# Load saved models
image_model = load_model('tumor_detection_model.h5')
#dnn_model = tf.keras.models.load_model('dnn_model_imdb.h5')
loaded_model = tf.keras.models.load_model('spam_model.h5')
lstm_model = tf.keras.models.load_model('lstm_model.h5')
dnn_model = tf.keras.models.load_model('spam_dnn_model.h5')
with open('spam_perceptron_model.pkl', 'rb') as model_file:
loaded_perceptron = pickle.load(model_file)
with open('spam_backpropagation_model.pkl', 'rb') as model_file:
lbackprop_model = pickle.load(model_file)
# Streamlit app
st.title("Classification App")
# Sidebar
task = st.sidebar.selectbox("Select Task", ["Tumor Detection", "Sentiment Classification"])
def preprocess_text(text):
tokenizer = Tokenizer()
tokenizer.fit_on_texts([text])
sequences = tokenizer.texts_to_sequences([text])
preprocessed_text = pad_sequences(sequences, maxlen=4)
return preprocessed_text
def predict_dnn(text_input):
encoded_input = tokenizer_dnn.texts_to_sequences([text_input])
padded_input = pad_sequences(encoded_input, maxlen=200, padding='post')
prediction = dnn_model.predict(padded_input)
prediction_value = prediction[0]
# Adjust the threshold based on your model and problem
if prediction_value > 0.5:
return "Spam"
else:
return "Ham"
def predict_lstm(text_input):
words = 5000
max_review_length=500
word_index = imdb.get_word_index()
text_input = text_input.lower().split()
text_input = [word_index[word] if word in word_index and word_index[word] < words else 0 for word in text_input]
text_input = sequence.pad_sequences([text_input], maxlen=max_review_length)
prediction = lstm_model.predict(text_input)
print("Raw Prediction:", prediction)
if prediction > 0.5:
return "Positive"
else:
return "Negative"
def predict_rnn(input_text):
encoded_input = tokenizer_rnn.texts_to_sequences([input_text])
padded_input = tf.keras.preprocessing.sequence.pad_sequences(encoded_input, maxlen=10, padding='post')
prediction = loaded_model.predict(padded_input)
if prediction > 0.5:
return "Spam"
else:
return "Ham"
def predict_perceptron(text_input):
encoded_input = tokenizer_per.texts_to_sequences([text_input])
padded_input = pad_sequences(encoded_input, maxlen=200, padding='post')
prediction = loaded_perceptron.predict(padded_input)
prediction_value = prediction[0]
# Adjust the threshold based on your model and problem
if prediction_value > 0.5:
return "Spam"
else:
return "Ham"
def predict_backpropogation(text_input):
encoded_input = tokenizer_back.texts_to_sequences([text_input])
padded_input = pad_sequences(encoded_input, maxlen=200, padding='post')
prediction = lbackprop_model.predict(padded_input)
prediction_value = prediction[0]
# Adjust the threshold based on your model and problem
if prediction_value > 0.5:
return "Spam"
else:
return "Ham"
# make a prediction for CNN
def preprocess_image(image):
image = image.resize((299, 299))
image_array = np.array(image)
preprocessed_image = preprocess_input(image_array)
return preprocessed_image
def make_prediction_cnn(image, image_model):
img = image.resize((128, 128))
img_array = np.array(img)
img_array = img_array.reshape((1, img_array.shape[0], img_array.shape[1], img_array.shape[2]))
preprocessed_image = preprocess_input(img_array)
prediction = image_model.predict(preprocessed_image)
if prediction > 0.5:
st.write("Tumor Detected")
else:
st.write("No Tumor")
if task == "Sentiment Classification":
st.subheader("Choose Model")
model_choice = st.radio("Select Model", ["DNN (Email)", "RNN (Email)", "Perceptron (Email)", "Backpropagation (Email)","LSTM (Movie_Review)"])
st.subheader("Text Input")
text_input = st.text_area("Enter Text")
if st.button("Predict"):
# Preprocess the text
preprocessed_text = preprocess_text(text_input)
if model_choice == "DNN (Email)":
if text_input:
prediction_result = predict_dnn(text_input)
st.write(f"The message is classified as: {prediction_result}")
elif model_choice == "RNN (Email)":
if text_input:
prediction_result = predict_rnn(text_input)
st.write(f"The message is classified as: {prediction_result}")
else:
st.write("Please enter some text for prediction")
elif model_choice == "LSTM (Movie_Review)":
if text_input:
prediction_result = predict_lstm(text_input)
st.write(f"The sentiment is: {prediction_result}")
else:
st.write("Please enter some text for prediction")
elif model_choice == "Perceptron (Email)":
if text_input:
prediction_result = predict_perceptron(text_input)
st.write(f"The message is classified as: {prediction_result}")
else:
st.write("Please enter some text for prediction")
elif model_choice == "Backpropagation (Email)":
if text_input:
prediction_result = predict_backpropogation(text_input)
st.write(f"The message is classified as: {prediction_result}")
else:
st.write("Please enter some text for prediction")
else:
st.subheader("Choose Model")
model_choice = st.radio("Select Model", ["CNN"])
st.subheader("Image Input")
image_input = st.file_uploader("Choose an image...", type="jpg")
if image_input is not None:
image = Image.open(image_input)
st.image(image, caption="Uploaded Image.", use_column_width=True)
# Preprocess the image
preprocessed_image = preprocess_image(image)
if st.button("Predict"):
if model_choice == "CNN":
make_prediction_cnn(image, image_model)