Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import torch | |
from datasets import load_dataset | |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
# load speech translation checkpoint | |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large-v2", device=device) | |
german_translation_pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-de") | |
# load text-to-speech checkpoint and speaker embeddings | |
model_id = "microsoft/speecht5_tts" # update with your model id | |
# pipe = pipeline("automatic-speech-recognition", model=model_id) | |
model = SpeechT5ForTextToSpeech.from_pretrained(model_id) | |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") | |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") | |
speaker_embeddings = torch.tensor(embeddings_dataset[7440]["xvector"]).unsqueeze(0) | |
processor = SpeechT5Processor.from_pretrained(model_id) | |
model_id_german = "Sandiago21/speecht5_finetuned_mozilla_foundation_common_voice_13_german" | |
model_german = SpeechT5ForTextToSpeech.from_pretrained(model_id_german) | |
processor_german = SpeechT5Processor.from_pretrained(model_id_german) | |
replacements = [ | |
("Ä", "E"), | |
("Æ", "E"), | |
("Ç", "C"), | |
("É", "E"), | |
("Í", "I"), | |
("Ó", "O"), | |
("Ö", "E"), | |
("Ü", "Y"), | |
("ß", "S"), | |
("à", "a"), | |
("á", "a"), | |
("ã", "a"), | |
("ä", "e"), | |
("å", "a"), | |
("ë", "e"), | |
("í", "i"), | |
("ï", "i"), | |
("ð", "o"), | |
("ñ", "n"), | |
("ò", "o"), | |
("ó", "o"), | |
("ô", "o"), | |
("ö", "u"), | |
("ú", "u"), | |
("ü", "y"), | |
("ý", "y"), | |
("Ā", "A"), | |
("ā", "a"), | |
("ă", "a"), | |
("ą", "a"), | |
("ć", "c"), | |
("Č", "C"), | |
("č", "c"), | |
("ď", "d"), | |
("Đ", "D"), | |
("ę", "e"), | |
("ě", "e"), | |
("ğ", "g"), | |
("İ", "I"), | |
("О", "O"), | |
("Ł", "L"), | |
("ń", "n"), | |
("ň", "n"), | |
("Ō", "O"), | |
("ō", "o"), | |
("ő", "o"), | |
("ř", "r"), | |
("Ś", "S"), | |
("ś", "s"), | |
("Ş", "S"), | |
("ş", "s"), | |
("Š", "S"), | |
("š", "s"), | |
("ū", "u"), | |
("ź", "z"), | |
("Ż", "Z"), | |
("Ž", "Z"), | |
("ǐ", "i"), | |
("ǐ", "i"), | |
("ș", "s"), | |
("ț", "t"), | |
] | |
def cleanup_text(text): | |
for src, dst in replacements: | |
text = text.replace(src, dst) | |
return text | |
def synthesize_speech(text): | |
text = cleanup_text(text) | |
inputs = processor(text=text, return_tensors="pt") | |
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) | |
return gr.Audio.update(value=(16000, speech.cpu().numpy())) | |
def translate_to_english(audio): | |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate", "language": "english"}) | |
return outputs["text"] | |
def synthesise_from_english(text): | |
text = cleanup_text(text) | |
inputs = processor(text=text, return_tensors="pt") | |
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) | |
return speech.cpu().numpy() | |
def translate_from_english_to_german(text): | |
return german_translation_pipe(text)[0]["translation_text"] | |
def synthesise_from_german(text): | |
text = cleanup_text(text) | |
inputs = processor_german(text=text, return_tensors="pt") | |
speech = model_german.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) | |
return speech.cpu() | |
def speech_to_speech_translation(audio): | |
translated_text = translate_to_english(audio) | |
translated_text = translate_from_english_to_german(translated_text) | |
# synthesised_speech = synthesise_from_english(translated_text) | |
# translated_text = translate_from_english_to_german(synthesised_speech) | |
synthesised_speech = synthesise_from_german(translated_text) | |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) | |
return ((16000, synthesised_speech), translated_text) | |
title = "Cascaded STST" | |
description = """ | |
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in German. Demo uses OpenAI's [Whisper Large v2](https://huggingface.co/openai/whisper-large-v2) model for speech translation, and [Sandiago21/speecht5_finetuned_google_fleurs_german](https://huggingface.co/Sandiago21/speecht5_finetuned_google_fleurs_german) checkpoint for text-to-speech, which is based on Microsoft's | |
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech, fine-tuned in German Audio dataset: | |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") | |
""" | |
demo = gr.Blocks() | |
mic_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="microphone", type="filepath"), | |
outputs=[gr.Audio(label="Generated Speech", type="numpy"), gr.outputs.Textbox()], | |
title=title, | |
description=description, | |
) | |
file_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="upload", type="filepath"), | |
outputs=[gr.Audio(label="Generated Speech", type="numpy"), gr.outputs.Textbox()], | |
examples=[["./example.wav"]], | |
title=title, | |
description=description, | |
) | |
with demo: | |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) | |
demo.launch() | |