|
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor |
|
from qwen_vl_utils import process_vision_info |
|
import streamlit as st |
|
|
|
|
|
model = Qwen2VLForConditionalGeneration.from_pretrained( |
|
"Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
st.title("OCR Image Text Extraction") |
|
|
|
|
|
uploaded_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"]) |
|
|
|
if uploaded_file is not None: |
|
|
|
image = Image.open(uploaded_file) |
|
st.image(image, caption="Uploaded Image", use_column_width=True) |
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "image", |
|
"image": "image", |
|
}, |
|
{"type": "text", "text": "Run Optical Character Recognition on the image."}, |
|
], |
|
} |
|
] |
|
|
|
|
|
text = processor.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
inputs = processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
) |
|
inputs = inputs.to("cpu") |
|
|
|
|
|
generated_ids = model.generate(**inputs, max_new_tokens=128) |
|
generated_ids_trimmed = [ |
|
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) |
|
] |
|
output_text = processor.batch_decode( |
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
|
|
|
|
st.subheader("Extracted Text:") |
|
st.write(output_text) |
|
|
|
|
|
st.subheader("Keyword Search") |
|
search_query = st.text_input("Enter keywords to search within the extracted text") |
|
|
|
if search_query: |
|
|
|
if search_query.lower() in output_text.lower(): |
|
highlighted_text = output_text.replace(search_query, f"**{search_query}**") |
|
st.write(f"Matching Text: {highlighted_text}") |
|
else: |
|
st.write("No matching text found.") |
|
|
|
streamlit run app.py |