Spaces:
Runtime error
Runtime error
import tensorflow as tf | |
import numpy as np | |
from PIL import Image | |
from glob import glob | |
import pandas as pd | |
from tensorflow.keras.preprocessing.image import img_to_array | |
from huggingface_hub import from_pretrained_keras | |
import gradio as gr | |
model = from_pretrained_keras("keras-io/super-resolution") | |
model.summary() | |
def infer(image): | |
nx=image.shape[0] | |
ny=image.shape[1] | |
img = Image.fromarray(image) | |
# img = img.resize((100,100)) | |
# img = img.crop((0,100,0,100)) | |
ycbcr = img.convert("YCbCr") | |
y, cb, cr = ycbcr.split() | |
y = img_to_array(y) | |
y = y.astype("float32") / 255.0 | |
input = np.expand_dims(y, axis=0) | |
out = model.predict(input) | |
nxo = out.squeeze().shape[0] | |
nyo = out.squeeze().shape[1] | |
out_img_y = out[0] | |
out_img_y *= 255.0 | |
# Restore the image in RGB color space. | |
out_img_y = out_img_y.clip(0, 255) | |
out_img_y = out_img_y.reshape((np.shape(out_img_y)[0], np.shape(out_img_y)[1])) | |
out_img_y = Image.fromarray(np.uint8(out_img_y), mode="L") | |
out_img_cb = cb.resize(out_img_y.size, Image.BICUBIC) | |
out_img_cr = cr.resize(out_img_y.size, Image.BICUBIC) | |
out_img = Image.merge("YCbCr", (out_img_y, out_img_cb, out_img_cr)).convert( | |
"RGB" | |
) | |
out_img.save('output.png') | |
out = {} | |
out.update( {'input image size x': nx } ) | |
out.update( {'output image size x': nxo } ) | |
out.update( {'input image size y': ny } ) | |
out.update( {'output image size y': nyo } ) | |
return (pd.DataFrame(data=out.values(), index=out.keys()).transpose(), img,out_img, 'output.png') | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1609.05158' target='_blank'>Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network</a></p><center> <a href='https://keras.io/examples/vision/super_resolution_sub_pixel/' target='_blank'>Image Super-Resolution using an Efficient Sub-Pixel CNN</a></p>" | |
examples= [[l] for l in glob('examples/tiles/*.jpg')] | |
out1 = gr.outputs.Dataframe(label='Summary', headers=["Input X (px)", "Output X (px)", "Input Y (px)", "Output Y (px)"], type='pandas') | |
out2 = gr.outputs.Image(label="Cropped input image", type='pil') | |
out3 = gr.outputs.Image(label="Super-resolution x3 image", type='pil') | |
out4 = gr.outputs.File(label='Click to download super-resolved image') | |
iface = gr.Interface( | |
fn=infer, | |
title = " Satellite Super-resolution", | |
description = "This space is a demo of Satellite image Super-Resolution using a Sub-Pixel Convolutional Neural Network", | |
article = article, | |
inputs=gr.inputs.Image(label="Input Image"), | |
outputs=[out1,out2,out3,out4], | |
examples=examples, | |
).launch() |