Roman Solomatin commited on
Commit
d2bf885
1 Parent(s): b688574

working table

Browse files
.gitignore CHANGED
@@ -12,3 +12,4 @@ eval-queue-bk/
12
  eval-results-bk/
13
  logs/
14
  /.pdm-python
 
 
12
  eval-results-bk/
13
  logs/
14
  /.pdm-python
15
+ leaderboard.csv
pdm.lock CHANGED
@@ -2,10 +2,10 @@
2
  # It is not intended for manual editing.
3
 
4
  [metadata]
5
- groups = ["default", "lint"]
6
  strategy = ["cross_platform", "inherit_metadata"]
7
  lock_version = "4.4.1"
8
- content_hash = "sha256:66e66d639b37e39bcbe01ff1d2345c10ada9d3e8c19397250879b6aea903b4b3"
9
 
10
  [[package]]
11
  name = "aiofiles"
@@ -149,7 +149,7 @@ name = "colorama"
149
  version = "0.4.6"
150
  requires_python = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7"
151
  summary = "Cross-platform colored terminal text."
152
- groups = ["default"]
153
  marker = "platform_system == \"Windows\" or sys_platform == \"win32\""
154
  files = [
155
  {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"},
@@ -224,7 +224,7 @@ name = "exceptiongroup"
224
  version = "1.2.1"
225
  requires_python = ">=3.7"
226
  summary = "Backport of PEP 654 (exception groups)"
227
- groups = ["default"]
228
  marker = "python_version < \"3.11\""
229
  files = [
230
  {file = "exceptiongroup-1.2.1-py3-none-any.whl", hash = "sha256:5258b9ed329c5bbdd31a309f53cbfb0b155341807f6ff7606a1e801a891b29ad"},
@@ -464,7 +464,7 @@ name = "idna"
464
  version = "3.7"
465
  requires_python = ">=3.5"
466
  summary = "Internationalized Domain Names in Applications (IDNA)"
467
- groups = ["default"]
468
  files = [
469
  {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"},
470
  {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"},
@@ -481,6 +481,17 @@ files = [
481
  {file = "importlib_resources-6.4.0.tar.gz", hash = "sha256:cdb2b453b8046ca4e3798eb1d84f3cce1446a0e8e7b5ef4efb600f19fc398145"},
482
  ]
483
 
 
 
 
 
 
 
 
 
 
 
 
484
  [[package]]
485
  name = "jinja2"
486
  version = "3.1.4"
@@ -566,6 +577,72 @@ files = [
566
  {file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"},
567
  ]
568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
569
  [[package]]
570
  name = "markdown-it-py"
571
  version = "3.0.0"
@@ -642,6 +719,32 @@ files = [
642
  {file = "mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba"},
643
  ]
644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
645
  [[package]]
646
  name = "numpy"
647
  version = "1.26.4"
@@ -687,7 +790,7 @@ name = "packaging"
687
  version = "24.1"
688
  requires_python = ">=3.8"
689
  summary = "Core utilities for Python packages"
690
- groups = ["default"]
691
  files = [
692
  {file = "packaging-24.1-py3-none-any.whl", hash = "sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124"},
693
  {file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"},
@@ -751,6 +854,17 @@ files = [
751
  {file = "pillow-10.3.0.tar.gz", hash = "sha256:9d2455fbf44c914840c793e89aa82d0e1763a14253a000743719ae5946814b2d"},
752
  ]
753
 
 
 
 
 
 
 
 
 
 
 
 
754
  [[package]]
755
  name = "pyarrow"
756
  version = "16.1.0"
@@ -828,6 +942,21 @@ files = [
828
  {file = "pydantic_core-2.18.4.tar.gz", hash = "sha256:ec3beeada09ff865c344ff3bc2f427f5e6c26401cc6113d77e372c3fdac73864"},
829
  ]
830
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
831
  [[package]]
832
  name = "pydub"
833
  version = "0.25.1"
@@ -860,6 +989,39 @@ files = [
860
  {file = "pyparsing-3.1.2.tar.gz", hash = "sha256:a1bac0ce561155ecc3ed78ca94d3c9378656ad4c94c1270de543f621420f94ad"},
861
  ]
862
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
863
  [[package]]
864
  name = "python-dateutil"
865
  version = "2.9.0.post0"
@@ -911,7 +1073,7 @@ name = "pyyaml"
911
  version = "6.0.1"
912
  requires_python = ">=3.6"
913
  summary = "YAML parser and emitter for Python"
914
- groups = ["default"]
915
  files = [
916
  {file = "PyYAML-6.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d858aa552c999bc8a8d57426ed01e40bef403cd8ccdd0fc5f6f04a00414cac2a"},
917
  {file = "PyYAML-6.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:fd66fc5d0da6d9815ba2cebeb4205f95818ff4b79c3ebe268e75d961704af52f"},
@@ -1111,6 +1273,18 @@ files = [
1111
  {file = "starlette-0.37.2.tar.gz", hash = "sha256:9af890290133b79fc3db55474ade20f6220a364a0402e0b556e7cd5e1e093823"},
1112
  ]
1113
 
 
 
 
 
 
 
 
 
 
 
 
 
1114
  [[package]]
1115
  name = "tomlkit"
1116
  version = "0.12.0"
@@ -1303,6 +1477,22 @@ files = [
1303
  {file = "uvloop-0.19.0.tar.gz", hash = "sha256:0246f4fd1bf2bf702e06b0d45ee91677ee5c31242f39aab4ea6fe0c51aedd0fd"},
1304
  ]
1305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1306
  [[package]]
1307
  name = "watchfiles"
1308
  version = "0.22.0"
@@ -1376,3 +1566,54 @@ files = [
1376
  {file = "websockets-11.0.3-py3-none-any.whl", hash = "sha256:6681ba9e7f8f3b19440921e99efbb40fc89f26cd71bf539e45d8c8a25c976dc6"},
1377
  {file = "websockets-11.0.3.tar.gz", hash = "sha256:88fc51d9a26b10fc331be344f1781224a375b78488fc343620184e95a4b27016"},
1378
  ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  # It is not intended for manual editing.
3
 
4
  [metadata]
5
+ groups = ["default", "lint", "test"]
6
  strategy = ["cross_platform", "inherit_metadata"]
7
  lock_version = "4.4.1"
8
+ content_hash = "sha256:91e6a31abcfb1868e17cc401d5b46de2963d35ef0693a5664fe8968e49f341e7"
9
 
10
  [[package]]
11
  name = "aiofiles"
 
149
  version = "0.4.6"
150
  requires_python = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7"
151
  summary = "Cross-platform colored terminal text."
152
+ groups = ["default", "test"]
153
  marker = "platform_system == \"Windows\" or sys_platform == \"win32\""
154
  files = [
155
  {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"},
 
224
  version = "1.2.1"
225
  requires_python = ">=3.7"
226
  summary = "Backport of PEP 654 (exception groups)"
227
+ groups = ["default", "test"]
228
  marker = "python_version < \"3.11\""
229
  files = [
230
  {file = "exceptiongroup-1.2.1-py3-none-any.whl", hash = "sha256:5258b9ed329c5bbdd31a309f53cbfb0b155341807f6ff7606a1e801a891b29ad"},
 
464
  version = "3.7"
465
  requires_python = ">=3.5"
466
  summary = "Internationalized Domain Names in Applications (IDNA)"
467
+ groups = ["default", "test"]
468
  files = [
469
  {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"},
470
  {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"},
 
481
  {file = "importlib_resources-6.4.0.tar.gz", hash = "sha256:cdb2b453b8046ca4e3798eb1d84f3cce1446a0e8e7b5ef4efb600f19fc398145"},
482
  ]
483
 
484
+ [[package]]
485
+ name = "iniconfig"
486
+ version = "2.0.0"
487
+ requires_python = ">=3.7"
488
+ summary = "brain-dead simple config-ini parsing"
489
+ groups = ["test"]
490
+ files = [
491
+ {file = "iniconfig-2.0.0-py3-none-any.whl", hash = "sha256:b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374"},
492
+ {file = "iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3"},
493
+ ]
494
+
495
  [[package]]
496
  name = "jinja2"
497
  version = "3.1.4"
 
577
  {file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"},
578
  ]
579
 
580
+ [[package]]
581
+ name = "lxml"
582
+ version = "5.2.2"
583
+ requires_python = ">=3.6"
584
+ summary = "Powerful and Pythonic XML processing library combining libxml2/libxslt with the ElementTree API."
585
+ groups = ["default"]
586
+ files = [
587
+ {file = "lxml-5.2.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:364d03207f3e603922d0d3932ef363d55bbf48e3647395765f9bfcbdf6d23632"},
588
+ {file = "lxml-5.2.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:50127c186f191b8917ea2fb8b206fbebe87fd414a6084d15568c27d0a21d60db"},
589
+ {file = "lxml-5.2.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:74e4f025ef3db1c6da4460dd27c118d8cd136d0391da4e387a15e48e5c975147"},
590
+ {file = "lxml-5.2.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:981a06a3076997adf7c743dcd0d7a0415582661e2517c7d961493572e909aa1d"},
591
+ {file = "lxml-5.2.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aef5474d913d3b05e613906ba4090433c515e13ea49c837aca18bde190853dff"},
592
+ {file = "lxml-5.2.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1e275ea572389e41e8b039ac076a46cb87ee6b8542df3fff26f5baab43713bca"},
593
+ {file = "lxml-5.2.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5b65529bb2f21ac7861a0e94fdbf5dc0daab41497d18223b46ee8515e5ad297"},
594
+ {file = "lxml-5.2.2-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:bcc98f911f10278d1daf14b87d65325851a1d29153caaf146877ec37031d5f36"},
595
+ {file = "lxml-5.2.2-cp310-cp310-manylinux_2_28_ppc64le.whl", hash = "sha256:b47633251727c8fe279f34025844b3b3a3e40cd1b198356d003aa146258d13a2"},
596
+ {file = "lxml-5.2.2-cp310-cp310-manylinux_2_28_s390x.whl", hash = "sha256:fbc9d316552f9ef7bba39f4edfad4a734d3d6f93341232a9dddadec4f15d425f"},
597
+ {file = "lxml-5.2.2-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:13e69be35391ce72712184f69000cda04fc89689429179bc4c0ae5f0b7a8c21b"},
598
+ {file = "lxml-5.2.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:3b6a30a9ab040b3f545b697cb3adbf3696c05a3a68aad172e3fd7ca73ab3c835"},
599
+ {file = "lxml-5.2.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:a233bb68625a85126ac9f1fc66d24337d6e8a0f9207b688eec2e7c880f012ec0"},
600
+ {file = "lxml-5.2.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:dfa7c241073d8f2b8e8dbc7803c434f57dbb83ae2a3d7892dd068d99e96efe2c"},
601
+ {file = "lxml-5.2.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:1a7aca7964ac4bb07680d5c9d63b9d7028cace3e2d43175cb50bba8c5ad33316"},
602
+ {file = "lxml-5.2.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:ae4073a60ab98529ab8a72ebf429f2a8cc612619a8c04e08bed27450d52103c0"},
603
+ {file = "lxml-5.2.2-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:ffb2be176fed4457e445fe540617f0252a72a8bc56208fd65a690fdb1f57660b"},
604
+ {file = "lxml-5.2.2-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:e290d79a4107d7d794634ce3e985b9ae4f920380a813717adf61804904dc4393"},
605
+ {file = "lxml-5.2.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:96e85aa09274955bb6bd483eaf5b12abadade01010478154b0ec70284c1b1526"},
606
+ {file = "lxml-5.2.2-cp310-cp310-win32.whl", hash = "sha256:f956196ef61369f1685d14dad80611488d8dc1ef00be57c0c5a03064005b0f30"},
607
+ {file = "lxml-5.2.2-cp310-cp310-win_amd64.whl", hash = "sha256:875a3f90d7eb5c5d77e529080d95140eacb3c6d13ad5b616ee8095447b1d22e7"},
608
+ {file = "lxml-5.2.2-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:b537bd04d7ccd7c6350cdaaaad911f6312cbd61e6e6045542f781c7f8b2e99d2"},
609
+ {file = "lxml-5.2.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4820c02195d6dfb7b8508ff276752f6b2ff8b64ae5d13ebe02e7667e035000b9"},
610
+ {file = "lxml-5.2.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f2a09f6184f17a80897172863a655467da2b11151ec98ba8d7af89f17bf63dae"},
611
+ {file = "lxml-5.2.2-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:76acba4c66c47d27c8365e7c10b3d8016a7da83d3191d053a58382311a8bf4e1"},
612
+ {file = "lxml-5.2.2-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:b128092c927eaf485928cec0c28f6b8bead277e28acf56800e972aa2c2abd7a2"},
613
+ {file = "lxml-5.2.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ae791f6bd43305aade8c0e22f816b34f3b72b6c820477aab4d18473a37e8090b"},
614
+ {file = "lxml-5.2.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a2f6a1bc2460e643785a2cde17293bd7a8f990884b822f7bca47bee0a82fc66b"},
615
+ {file = "lxml-5.2.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e8d351ff44c1638cb6e980623d517abd9f580d2e53bfcd18d8941c052a5a009"},
616
+ {file = "lxml-5.2.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bec4bd9133420c5c52d562469c754f27c5c9e36ee06abc169612c959bd7dbb07"},
617
+ {file = "lxml-5.2.2-pp37-pypy37_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:55ce6b6d803890bd3cc89975fca9de1dff39729b43b73cb15ddd933b8bc20484"},
618
+ {file = "lxml-5.2.2-pp37-pypy37_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:8ab6a358d1286498d80fe67bd3d69fcbc7d1359b45b41e74c4a26964ca99c3f8"},
619
+ {file = "lxml-5.2.2-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:06668e39e1f3c065349c51ac27ae430719d7806c026fec462e5693b08b95696b"},
620
+ {file = "lxml-5.2.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:9cd5323344d8ebb9fb5e96da5de5ad4ebab993bbf51674259dbe9d7a18049525"},
621
+ {file = "lxml-5.2.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89feb82ca055af0fe797a2323ec9043b26bc371365847dbe83c7fd2e2f181c34"},
622
+ {file = "lxml-5.2.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e481bba1e11ba585fb06db666bfc23dbe181dbafc7b25776156120bf12e0d5a6"},
623
+ {file = "lxml-5.2.2-pp38-pypy38_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:9d6c6ea6a11ca0ff9cd0390b885984ed31157c168565702959c25e2191674a14"},
624
+ {file = "lxml-5.2.2-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:3d98de734abee23e61f6b8c2e08a88453ada7d6486dc7cdc82922a03968928db"},
625
+ {file = "lxml-5.2.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:69ab77a1373f1e7563e0fb5a29a8440367dec051da6c7405333699d07444f511"},
626
+ {file = "lxml-5.2.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:34e17913c431f5ae01d8658dbf792fdc457073dcdfbb31dc0cc6ab256e664a8d"},
627
+ {file = "lxml-5.2.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:05f8757b03208c3f50097761be2dea0aba02e94f0dc7023ed73a7bb14ff11eb0"},
628
+ {file = "lxml-5.2.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6a520b4f9974b0a0a6ed73c2154de57cdfd0c8800f4f15ab2b73238ffed0b36e"},
629
+ {file = "lxml-5.2.2-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:5e097646944b66207023bc3c634827de858aebc226d5d4d6d16f0b77566ea182"},
630
+ {file = "lxml-5.2.2-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:b5e4ef22ff25bfd4ede5f8fb30f7b24446345f3e79d9b7455aef2836437bc38a"},
631
+ {file = "lxml-5.2.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:ff69a9a0b4b17d78170c73abe2ab12084bdf1691550c5629ad1fe7849433f324"},
632
+ {file = "lxml-5.2.2.tar.gz", hash = "sha256:bb2dc4898180bea79863d5487e5f9c7c34297414bad54bcd0f0852aee9cfdb87"},
633
+ ]
634
+
635
+ [[package]]
636
+ name = "markdown"
637
+ version = "3.6"
638
+ requires_python = ">=3.8"
639
+ summary = "Python implementation of John Gruber's Markdown."
640
+ groups = ["default"]
641
+ files = [
642
+ {file = "Markdown-3.6-py3-none-any.whl", hash = "sha256:48f276f4d8cfb8ce6527c8f79e2ee29708508bf4d40aa410fbc3b4ee832c850f"},
643
+ {file = "Markdown-3.6.tar.gz", hash = "sha256:ed4f41f6daecbeeb96e576ce414c41d2d876daa9a16cb35fa8ed8c2ddfad0224"},
644
+ ]
645
+
646
  [[package]]
647
  name = "markdown-it-py"
648
  version = "3.0.0"
 
719
  {file = "mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba"},
720
  ]
721
 
722
+ [[package]]
723
+ name = "multidict"
724
+ version = "6.0.5"
725
+ requires_python = ">=3.7"
726
+ summary = "multidict implementation"
727
+ groups = ["test"]
728
+ files = [
729
+ {file = "multidict-6.0.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:228b644ae063c10e7f324ab1ab6b548bdf6f8b47f3ec234fef1093bc2735e5f9"},
730
+ {file = "multidict-6.0.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:896ebdcf62683551312c30e20614305f53125750803b614e9e6ce74a96232604"},
731
+ {file = "multidict-6.0.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:411bf8515f3be9813d06004cac41ccf7d1cd46dfe233705933dd163b60e37600"},
732
+ {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d147090048129ce3c453f0292e7697d333db95e52616b3793922945804a433c"},
733
+ {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:215ed703caf15f578dca76ee6f6b21b7603791ae090fbf1ef9d865571039ade5"},
734
+ {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7c6390cf87ff6234643428991b7359b5f59cc15155695deb4eda5c777d2b880f"},
735
+ {file = "multidict-6.0.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21fd81c4ebdb4f214161be351eb5bcf385426bf023041da2fd9e60681f3cebae"},
736
+ {file = "multidict-6.0.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3cc2ad10255f903656017363cd59436f2111443a76f996584d1077e43ee51182"},
737
+ {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:6939c95381e003f54cd4c5516740faba40cf5ad3eeff460c3ad1d3e0ea2549bf"},
738
+ {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:220dd781e3f7af2c2c1053da9fa96d9cf3072ca58f057f4c5adaaa1cab8fc442"},
739
+ {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:766c8f7511df26d9f11cd3a8be623e59cca73d44643abab3f8c8c07620524e4a"},
740
+ {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:fe5d7785250541f7f5019ab9cba2c71169dc7d74d0f45253f8313f436458a4ef"},
741
+ {file = "multidict-6.0.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c1c1496e73051918fcd4f58ff2e0f2f3066d1c76a0c6aeffd9b45d53243702cc"},
742
+ {file = "multidict-6.0.5-cp310-cp310-win32.whl", hash = "sha256:7afcdd1fc07befad18ec4523a782cde4e93e0a2bf71239894b8d61ee578c1319"},
743
+ {file = "multidict-6.0.5-cp310-cp310-win_amd64.whl", hash = "sha256:99f60d34c048c5c2fabc766108c103612344c46e35d4ed9ae0673d33c8fb26e8"},
744
+ {file = "multidict-6.0.5-py3-none-any.whl", hash = "sha256:0d63c74e3d7ab26de115c49bffc92cc77ed23395303d496eae515d4204a625e7"},
745
+ {file = "multidict-6.0.5.tar.gz", hash = "sha256:f7e301075edaf50500f0b341543c41194d8df3ae5caf4702f2095f3ca73dd8da"},
746
+ ]
747
+
748
  [[package]]
749
  name = "numpy"
750
  version = "1.26.4"
 
790
  version = "24.1"
791
  requires_python = ">=3.8"
792
  summary = "Core utilities for Python packages"
793
+ groups = ["default", "test"]
794
  files = [
795
  {file = "packaging-24.1-py3-none-any.whl", hash = "sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124"},
796
  {file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"},
 
854
  {file = "pillow-10.3.0.tar.gz", hash = "sha256:9d2455fbf44c914840c793e89aa82d0e1763a14253a000743719ae5946814b2d"},
855
  ]
856
 
857
+ [[package]]
858
+ name = "pluggy"
859
+ version = "1.5.0"
860
+ requires_python = ">=3.8"
861
+ summary = "plugin and hook calling mechanisms for python"
862
+ groups = ["test"]
863
+ files = [
864
+ {file = "pluggy-1.5.0-py3-none-any.whl", hash = "sha256:44e1ad92c8ca002de6377e165f3e0f1be63266ab4d554740532335b9d75ea669"},
865
+ {file = "pluggy-1.5.0.tar.gz", hash = "sha256:2cffa88e94fdc978c4c574f15f9e59b7f4201d439195c3715ca9e2486f1d0cf1"},
866
+ ]
867
+
868
  [[package]]
869
  name = "pyarrow"
870
  version = "16.1.0"
 
942
  {file = "pydantic_core-2.18.4.tar.gz", hash = "sha256:ec3beeada09ff865c344ff3bc2f427f5e6c26401cc6113d77e372c3fdac73864"},
943
  ]
944
 
945
+ [[package]]
946
+ name = "pydantic-settings"
947
+ version = "2.3.3"
948
+ requires_python = ">=3.8"
949
+ summary = "Settings management using Pydantic"
950
+ groups = ["default"]
951
+ dependencies = [
952
+ "pydantic>=2.7.0",
953
+ "python-dotenv>=0.21.0",
954
+ ]
955
+ files = [
956
+ {file = "pydantic_settings-2.3.3-py3-none-any.whl", hash = "sha256:e4ed62ad851670975ec11285141db888fd24947f9440bd4380d7d8788d4965de"},
957
+ {file = "pydantic_settings-2.3.3.tar.gz", hash = "sha256:87fda838b64b5039b970cd47c3e8a1ee460ce136278ff672980af21516f6e6ce"},
958
+ ]
959
+
960
  [[package]]
961
  name = "pydub"
962
  version = "0.25.1"
 
989
  {file = "pyparsing-3.1.2.tar.gz", hash = "sha256:a1bac0ce561155ecc3ed78ca94d3c9378656ad4c94c1270de543f621420f94ad"},
990
  ]
991
 
992
+ [[package]]
993
+ name = "pytest"
994
+ version = "8.2.2"
995
+ requires_python = ">=3.8"
996
+ summary = "pytest: simple powerful testing with Python"
997
+ groups = ["test"]
998
+ dependencies = [
999
+ "colorama; sys_platform == \"win32\"",
1000
+ "exceptiongroup>=1.0.0rc8; python_version < \"3.11\"",
1001
+ "iniconfig",
1002
+ "packaging",
1003
+ "pluggy<2.0,>=1.5",
1004
+ "tomli>=1; python_version < \"3.11\"",
1005
+ ]
1006
+ files = [
1007
+ {file = "pytest-8.2.2-py3-none-any.whl", hash = "sha256:c434598117762e2bd304e526244f67bf66bbd7b5d6cf22138be51ff661980343"},
1008
+ {file = "pytest-8.2.2.tar.gz", hash = "sha256:de4bb8104e201939ccdc688b27a89a7be2079b22e2bd2b07f806b6ba71117977"},
1009
+ ]
1010
+
1011
+ [[package]]
1012
+ name = "pytest-vcr"
1013
+ version = "1.0.2"
1014
+ summary = "Plugin for managing VCR.py cassettes"
1015
+ groups = ["test"]
1016
+ dependencies = [
1017
+ "pytest>=3.6.0",
1018
+ "vcrpy",
1019
+ ]
1020
+ files = [
1021
+ {file = "pytest-vcr-1.0.2.tar.gz", hash = "sha256:23ee51b75abbcc43d926272773aae4f39f93aceb75ed56852d0bf618f92e1896"},
1022
+ {file = "pytest_vcr-1.0.2-py2.py3-none-any.whl", hash = "sha256:2f316e0539399bea0296e8b8401145c62b6f85e9066af7e57b6151481b0d6d9c"},
1023
+ ]
1024
+
1025
  [[package]]
1026
  name = "python-dateutil"
1027
  version = "2.9.0.post0"
 
1073
  version = "6.0.1"
1074
  requires_python = ">=3.6"
1075
  summary = "YAML parser and emitter for Python"
1076
+ groups = ["default", "test"]
1077
  files = [
1078
  {file = "PyYAML-6.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d858aa552c999bc8a8d57426ed01e40bef403cd8ccdd0fc5f6f04a00414cac2a"},
1079
  {file = "PyYAML-6.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:fd66fc5d0da6d9815ba2cebeb4205f95818ff4b79c3ebe268e75d961704af52f"},
 
1273
  {file = "starlette-0.37.2.tar.gz", hash = "sha256:9af890290133b79fc3db55474ade20f6220a364a0402e0b556e7cd5e1e093823"},
1274
  ]
1275
 
1276
+ [[package]]
1277
+ name = "tomli"
1278
+ version = "2.0.1"
1279
+ requires_python = ">=3.7"
1280
+ summary = "A lil' TOML parser"
1281
+ groups = ["test"]
1282
+ marker = "python_version < \"3.11\""
1283
+ files = [
1284
+ {file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"},
1285
+ {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"},
1286
+ ]
1287
+
1288
  [[package]]
1289
  name = "tomlkit"
1290
  version = "0.12.0"
 
1477
  {file = "uvloop-0.19.0.tar.gz", hash = "sha256:0246f4fd1bf2bf702e06b0d45ee91677ee5c31242f39aab4ea6fe0c51aedd0fd"},
1478
  ]
1479
 
1480
+ [[package]]
1481
+ name = "vcrpy"
1482
+ version = "5.1.0"
1483
+ requires_python = ">=3.8"
1484
+ summary = "Automatically mock your HTTP interactions to simplify and speed up testing"
1485
+ groups = ["test"]
1486
+ dependencies = [
1487
+ "PyYAML",
1488
+ "wrapt",
1489
+ "yarl",
1490
+ ]
1491
+ files = [
1492
+ {file = "vcrpy-5.1.0-py2.py3-none-any.whl", hash = "sha256:605e7b7a63dcd940db1df3ab2697ca7faf0e835c0852882142bafb19649d599e"},
1493
+ {file = "vcrpy-5.1.0.tar.gz", hash = "sha256:bbf1532f2618a04f11bce2a99af3a9647a32c880957293ff91e0a5f187b6b3d2"},
1494
+ ]
1495
+
1496
  [[package]]
1497
  name = "watchfiles"
1498
  version = "0.22.0"
 
1566
  {file = "websockets-11.0.3-py3-none-any.whl", hash = "sha256:6681ba9e7f8f3b19440921e99efbb40fc89f26cd71bf539e45d8c8a25c976dc6"},
1567
  {file = "websockets-11.0.3.tar.gz", hash = "sha256:88fc51d9a26b10fc331be344f1781224a375b78488fc343620184e95a4b27016"},
1568
  ]
1569
+
1570
+ [[package]]
1571
+ name = "wrapt"
1572
+ version = "1.16.0"
1573
+ requires_python = ">=3.6"
1574
+ summary = "Module for decorators, wrappers and monkey patching."
1575
+ groups = ["test"]
1576
+ files = [
1577
+ {file = "wrapt-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:ffa565331890b90056c01db69c0fe634a776f8019c143a5ae265f9c6bc4bd6d4"},
1578
+ {file = "wrapt-1.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e4fdb9275308292e880dcbeb12546df7f3e0f96c6b41197e0cf37d2826359020"},
1579
+ {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb2dee3874a500de01c93d5c71415fcaef1d858370d405824783e7a8ef5db440"},
1580
+ {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2a88e6010048489cda82b1326889ec075a8c856c2e6a256072b28eaee3ccf487"},
1581
+ {file = "wrapt-1.16.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ac83a914ebaf589b69f7d0a1277602ff494e21f4c2f743313414378f8f50a4cf"},
1582
+ {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:73aa7d98215d39b8455f103de64391cb79dfcad601701a3aa0dddacf74911d72"},
1583
+ {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:807cc8543a477ab7422f1120a217054f958a66ef7314f76dd9e77d3f02cdccd0"},
1584
+ {file = "wrapt-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bf5703fdeb350e36885f2875d853ce13172ae281c56e509f4e6eca049bdfb136"},
1585
+ {file = "wrapt-1.16.0-cp310-cp310-win32.whl", hash = "sha256:f6b2d0c6703c988d334f297aa5df18c45e97b0af3679bb75059e0e0bd8b1069d"},
1586
+ {file = "wrapt-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:decbfa2f618fa8ed81c95ee18a387ff973143c656ef800c9f24fb7e9c16054e2"},
1587
+ {file = "wrapt-1.16.0-py3-none-any.whl", hash = "sha256:6906c4100a8fcbf2fa735f6059214bb13b97f75b1a61777fcf6432121ef12ef1"},
1588
+ {file = "wrapt-1.16.0.tar.gz", hash = "sha256:5f370f952971e7d17c7d1ead40e49f32345a7f7a5373571ef44d800d06b1899d"},
1589
+ ]
1590
+
1591
+ [[package]]
1592
+ name = "yarl"
1593
+ version = "1.9.4"
1594
+ requires_python = ">=3.7"
1595
+ summary = "Yet another URL library"
1596
+ groups = ["test"]
1597
+ dependencies = [
1598
+ "idna>=2.0",
1599
+ "multidict>=4.0",
1600
+ ]
1601
+ files = [
1602
+ {file = "yarl-1.9.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a8c1df72eb746f4136fe9a2e72b0c9dc1da1cbd23b5372f94b5820ff8ae30e0e"},
1603
+ {file = "yarl-1.9.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a3a6ed1d525bfb91b3fc9b690c5a21bb52de28c018530ad85093cc488bee2dd2"},
1604
+ {file = "yarl-1.9.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c38c9ddb6103ceae4e4498f9c08fac9b590c5c71b0370f98714768e22ac6fa66"},
1605
+ {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d9e09c9d74f4566e905a0b8fa668c58109f7624db96a2171f21747abc7524234"},
1606
+ {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b8477c1ee4bd47c57d49621a062121c3023609f7a13b8a46953eb6c9716ca392"},
1607
+ {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d5ff2c858f5f6a42c2a8e751100f237c5e869cbde669a724f2062d4c4ef93551"},
1608
+ {file = "yarl-1.9.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:357495293086c5b6d34ca9616a43d329317feab7917518bc97a08f9e55648455"},
1609
+ {file = "yarl-1.9.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:54525ae423d7b7a8ee81ba189f131054defdb122cde31ff17477951464c1691c"},
1610
+ {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:801e9264d19643548651b9db361ce3287176671fb0117f96b5ac0ee1c3530d53"},
1611
+ {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e516dc8baf7b380e6c1c26792610230f37147bb754d6426462ab115a02944385"},
1612
+ {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:7d5aaac37d19b2904bb9dfe12cdb08c8443e7ba7d2852894ad448d4b8f442863"},
1613
+ {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:54beabb809ffcacbd9d28ac57b0db46e42a6e341a030293fb3185c409e626b8b"},
1614
+ {file = "yarl-1.9.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bac8d525a8dbc2a1507ec731d2867025d11ceadcb4dd421423a5d42c56818541"},
1615
+ {file = "yarl-1.9.4-cp310-cp310-win32.whl", hash = "sha256:7855426dfbddac81896b6e533ebefc0af2f132d4a47340cee6d22cac7190022d"},
1616
+ {file = "yarl-1.9.4-cp310-cp310-win_amd64.whl", hash = "sha256:848cd2a1df56ddbffeb375535fb62c9d1645dde33ca4d51341378b3f5954429b"},
1617
+ {file = "yarl-1.9.4-py3-none-any.whl", hash = "sha256:928cecb0ef9d5a7946eb6ff58417ad2fe9375762382f1bf5c55e61645f2c43ad"},
1618
+ {file = "yarl-1.9.4.tar.gz", hash = "sha256:566db86717cf8080b99b58b083b773a908ae40f06681e87e589a976faf8246bf"},
1619
+ ]
pyproject.toml CHANGED
@@ -25,6 +25,9 @@ dependencies = [
25
  # "accelerate",
26
  # "sentencepiece",
27
  "pyarrow>=16.1.0",
 
 
 
28
  ]
29
  requires-python = "==3.10.*"
30
  readme = "README.md"
@@ -37,6 +40,10 @@ distribution = false
37
  lint = [
38
  "ruff>=0.4.8",
39
  ]
 
 
 
 
40
 
41
 
42
  [tool.ruff]
 
25
  # "accelerate",
26
  # "sentencepiece",
27
  "pyarrow>=16.1.0",
28
+ "pydantic-settings>=2.3.3",
29
+ "markdown>=3.6",
30
+ "lxml>=5.2.2",
31
  ]
32
  requires-python = "==3.10.*"
33
  readme = "README.md"
 
40
  lint = [
41
  "ruff>=0.4.8",
42
  ]
43
+ test = [
44
+ "pytest>=8.2.2",
45
+ "pytest-vcr>=1.0.2",
46
+ ]
47
 
48
 
49
  [tool.ruff]
src/__init__.py DELETED
File without changes
src/encodechka/about.py CHANGED
@@ -9,69 +9,40 @@ class Task:
9
  col_name: str
10
 
11
 
12
- # Select your tasks here
13
- # ---------------------------------------------------
14
  class Tasks(Enum):
15
- # task_key in the json file, metric_key in the json file, name to display in the leaderboard
16
- task0 = Task("anli_r1", "acc", "ANLI")
17
- task1 = Task("logiqa", "acc_norm", "LogiQA")
 
 
 
 
 
 
 
18
 
19
 
20
- NUM_FEWSHOT = 0 # Change with your few shot
21
- # ---------------------------------------------------
22
 
23
-
24
- # Your leaderboard name
25
- TITLE = """<h1 align="center" id="space-title">Demo leaderboard</h1>"""
26
-
27
- # What does your leaderboard evaluate?
28
  INTRODUCTION_TEXT = """
29
- Intro text
30
- """
31
-
32
- # Which evaluations are you running? how can people reproduce what you have?
33
- LLM_BENCHMARKS_TEXT = """
34
- ## How it works
35
-
36
- ## Reproducibility
37
- To reproduce our results, here is the commands you can run:
38
-
 
 
 
 
 
 
 
 
 
39
  """
40
 
41
- EVALUATION_QUEUE_TEXT = """
42
- ## Some good practices before submitting a model
43
-
44
- ### 1) Make sure you can load your model and tokenizer using AutoClasses:
45
- ```python
46
- from transformers import AutoConfig, AutoModel, AutoTokenizer
47
- config = AutoConfig.from_pretrained("your model name", revision=revision)
48
- model = AutoModel.from_pretrained("your model name", revision=revision)
49
- tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
50
- ```
51
- If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been
52
- improperly uploaded.
53
-
54
- Note: make sure your model is public!
55
- Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it,
56
- stay posted!
57
-
58
- ### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
59
- It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number
60
- of parameters of your model to the `Extended Viewer`!
61
-
62
- ### 3) Make sure your model has an open license!
63
- This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
64
-
65
- ### 4) Fill up your model card
66
- When we add extra information about models to the leaderboard, it will be automatically taken from the model card
67
-
68
- ## In case of model failure
69
- If your model is displayed in the `FAILED` category, its execution stopped.
70
- Make sure you have followed the above steps first.
71
- If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without
72
- modifications (you can add `--limit` to limit the number of examples per task).
73
- """
74
-
75
- CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
76
- CITATION_BUTTON_TEXT = r"""
77
- """
 
9
  col_name: str
10
 
11
 
 
 
12
  class Tasks(Enum):
13
+ STS = Task("STS", "STS", "STS")
14
+ PI = Task("PI", "PI", "PI")
15
+ NLI = Task("NLI", "NLI", "NLI")
16
+ SA = Task("SA", "SA", "SA")
17
+ TI = Task("TI", "TI", "TI")
18
+ II = Task("II", "II", "II")
19
+ IC = Task("IC", "IC", "IC")
20
+ ICX = Task("ICX", "ICX", "ICX")
21
+ NE1 = Task("NE1", "NE1", "NE1")
22
+ NE2 = Task("NE2", "NE2", "NE2")
23
 
24
 
25
+ TITLE = """<h1 align="center" id="space-title">Encodechka</h1>"""
 
26
 
 
 
 
 
 
27
  INTRODUCTION_TEXT = """
28
+ <a href="https://github.com/avidale/encodechka">Оригинальный репозиторий GitHub</a>
29
+
30
+ Задачи
31
+ - Semantic text similarity (**STS**) на основе переведённого датасета
32
+ [STS-B](https://huggingface.co/datasets/stsb_multi_mt);
33
+ - Paraphrase identification (**PI**) на основе датасета paraphraser.ru;
34
+ - Natural language inference (**NLI**) на датасете [XNLI](https://github.com/facebookresearch/XNLI);
35
+ - Sentiment analysis (**SA**) на данных [SentiRuEval2016](http://www.dialog-21.ru/evaluation/2016/sentiment/).
36
+ - Toxicity identification (**TI**) на датасете токсичных комментариев из
37
+ [OKMLCup](https://cups.mail.ru/ru/contests/okmlcup2020);
38
+ - Inappropriateness identification (**II**) на
39
+ [датасете Сколтеха](https://github.com/skoltech-nlp/inappropriate-sensitive-topics);
40
+ - Intent classification (**IC**) и её кросс-язычная версия **ICX** на датасете
41
+ [NLU-evaluation-data](https://github.com/xliuhw/NLU-Evaluation-Data), который я автоматически перевёл на русский.
42
+ В IC классификатор обучается на русских данных, а в ICX – на английских, а тестируется в обоих случаях на русских.
43
+ - Распознавание именованных сущностей на датасетах
44
+ [factRuEval-2016](https://github.com/dialogue-evaluation/factRuEval-2016) (**NE1**) и
45
+ [RuDReC](https://github.com/cimm-kzn/RuDReC) (**NE2**). Эти две задачи требуют получать эмбеддинги отдельных токенов,
46
+ а не целых предложений; поэтому там участвуют не все модели.
47
  """
48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/encodechka/app.py CHANGED
@@ -2,87 +2,34 @@ import gradio as gr
2
  import pandas as pd
3
  from about import (
4
  INTRODUCTION_TEXT,
5
- LLM_BENCHMARKS_TEXT,
6
  TITLE,
7
  )
8
  from apscheduler.schedulers.background import BackgroundScheduler
9
  from display.css_html_js import custom_css
10
  from display.utils import (
11
- BENCHMARK_COLS,
12
  COLS,
13
- EVAL_COLS,
14
- NUMERIC_INTERVALS,
15
  TYPES,
16
  AutoEvalColumn,
17
- ModelType,
18
- Precision,
19
  fields,
20
  )
21
- from envs import (
22
- API,
23
- EVAL_REQUESTS_PATH,
24
- EVAL_RESULTS_PATH,
25
- QUEUE_REPO,
26
- REPO_ID,
27
- RESULTS_REPO,
28
- TOKEN,
29
- )
30
- from huggingface_hub import snapshot_download
31
- from populate import get_evaluation_queue_df, get_leaderboard_df
32
-
33
- # from submission.submit import add_new_eval
34
-
35
-
36
- def restart_space():
37
- API.restart_space(repo_id=REPO_ID)
38
 
 
 
 
 
 
39
 
40
- try:
41
- print(EVAL_REQUESTS_PATH)
42
- snapshot_download(
43
- repo_id=QUEUE_REPO,
44
- local_dir=EVAL_REQUESTS_PATH,
45
- repo_type="dataset",
46
- tqdm_class=None,
47
- etag_timeout=30,
48
- token=TOKEN,
49
- )
50
- except Exception:
51
- restart_space()
52
- try:
53
- print(EVAL_RESULTS_PATH)
54
- snapshot_download(
55
- repo_id=RESULTS_REPO,
56
- local_dir=EVAL_RESULTS_PATH,
57
- repo_type="dataset",
58
- tqdm_class=None,
59
- etag_timeout=30,
60
- token=TOKEN,
61
- )
62
- except Exception:
63
- restart_space()
64
-
65
- raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
66
- leaderboard_df = original_df.copy()
67
 
68
- (
69
- finished_eval_queue_df,
70
- running_eval_queue_df,
71
- pending_eval_queue_df,
72
- ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
73
 
74
 
75
- # Searching and filtering
76
- def update_table(
77
  hidden_df: pd.DataFrame,
78
  columns: list,
79
- type_query: list,
80
- precision_query: str,
81
- size_query: list,
82
  show_deleted: bool,
83
  query: str,
84
- ):
85
- filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
86
  filtered_df = filter_queries(query, filtered_df)
87
  df = select_columns(filtered_df, columns)
88
  return df
@@ -94,11 +41,10 @@ def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
94
 
95
  def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
96
  always_here_cols = [
97
- AutoEvalColumn.model_type_symbol.name,
98
- AutoEvalColumn.model.name,
99
  ]
100
- # We use COLS to maintain sorting
101
- filtered_df = df[always_here_cols + [c for c in COLS if c in df.columns and c in columns]]
102
  return filtered_df
103
 
104
 
@@ -117,256 +63,109 @@ def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
117
  filtered_df = filtered_df.drop_duplicates(
118
  subset=[
119
  AutoEvalColumn.model.name,
120
- AutoEvalColumn.precision.name,
121
- AutoEvalColumn.revision.name,
122
  ]
123
  )
124
-
125
  return filtered_df
126
 
127
 
128
  def filter_models(
129
  df: pd.DataFrame,
130
- type_query: list,
131
- size_query: list,
132
- precision_query: list,
133
  show_deleted: bool,
134
  ) -> pd.DataFrame:
135
- # Show all models
136
  if show_deleted:
137
  filtered_df = df
138
- else: # Show only still on the hub models
139
- filtered_df = df[df[AutoEvalColumn.still_on_hub.name] is True]
140
-
141
- type_emoji = [t[0] for t in type_query]
142
- filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
143
- filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin([*precision_query, "None"])]
144
-
145
- numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
146
- params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
147
- mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
148
- filtered_df = filtered_df.loc[mask]
149
 
150
  return filtered_df
151
 
152
 
153
- def build_app() -> gr.Blocks:
154
- with gr.Blocks(css=custom_css) as app:
155
- gr.HTML(TITLE)
156
- gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
157
-
158
- with gr.Tabs(elem_classes="tab-buttons"):
159
- with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
160
  with gr.Row():
161
- with gr.Column():
162
- with gr.Row():
163
- search_bar = gr.Textbox(
164
- placeholder=" 🔍 Search for your model (separate multiple queries with `;`) "
165
- "and press ENTER...",
166
- show_label=False,
167
- elem_id="search-bar",
168
- )
169
- with gr.Row():
170
- shown_columns = gr.CheckboxGroup(
171
- choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden],
172
- value=[
173
- c.name
174
- for c in fields(AutoEvalColumn)
175
- if c.displayed_by_default and not c.hidden and not c.never_hidden
176
- ],
177
- label="Select columns to show",
178
- elem_id="column-select",
179
- interactive=True,
180
- )
181
- with gr.Row():
182
- deleted_models_visibility = gr.Checkbox(
183
- value=False,
184
- label="Show gated/private/deleted models",
185
- interactive=True,
186
- )
187
- with gr.Column(min_width=320):
188
- # with gr.Box(elem_id="box-filter"):
189
- filter_columns_type = gr.CheckboxGroup(
190
- label="Model types",
191
- choices=[t.to_str() for t in ModelType],
192
- value=[t.to_str() for t in ModelType],
193
- interactive=True,
194
- elem_id="filter-columns-type",
195
- )
196
- filter_columns_precision = gr.CheckboxGroup(
197
- label="Precision",
198
- choices=[i.value.name for i in Precision],
199
- value=[i.value.name for i in Precision],
200
- interactive=True,
201
- elem_id="filter-columns-precision",
202
- )
203
- filter_columns_size = gr.CheckboxGroup(
204
- label="Model sizes (in billions of parameters)",
205
- choices=list(NUMERIC_INTERVALS.keys()),
206
- value=list(NUMERIC_INTERVALS.keys()),
207
- interactive=True,
208
- elem_id="filter-columns-size",
209
- )
210
-
211
- leaderboard_table = gr.components.Dataframe(
212
- value=leaderboard_df[
213
- [c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value
214
- ],
215
- headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
216
- datatype=TYPES,
217
- elem_id="leaderboard-table",
218
- interactive=False,
219
- visible=True,
220
- )
221
-
222
- # Dummy leaderboard for handling the case when the user uses backspace key
223
- hidden_leaderboard_table_for_search = gr.components.Dataframe(
224
- value=original_df[COLS],
225
- headers=COLS,
226
- datatype=TYPES,
227
- visible=False,
228
- )
229
- search_bar.submit(
230
- update_table,
231
- [
232
- hidden_leaderboard_table_for_search,
233
- shown_columns,
234
- filter_columns_type,
235
- filter_columns_precision,
236
- filter_columns_size,
237
- deleted_models_visibility,
238
- search_bar,
239
- ],
240
- leaderboard_table,
241
- )
242
- for selector in [
243
- shown_columns,
244
- filter_columns_type,
245
- filter_columns_precision,
246
- filter_columns_size,
247
- deleted_models_visibility,
248
- ]:
249
- selector.change(
250
- update_table,
251
- [
252
- hidden_leaderboard_table_for_search,
253
- shown_columns,
254
- filter_columns_type,
255
- filter_columns_precision,
256
- filter_columns_size,
257
- deleted_models_visibility,
258
- search_bar,
259
  ],
260
- leaderboard_table,
261
- queue=True,
 
 
 
 
 
 
 
262
  )
263
 
264
- with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
265
- gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
266
 
267
- # with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
268
- # with gr.Column():
269
- # with gr.Row():
270
- # gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
271
- #
272
- # with gr.Column():
273
- # with gr.Accordion(
274
- # f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
275
- # open=False,
276
- # ):
277
- # with gr.Row():
278
- # finished_eval_table = gr.components.Dataframe(
279
- # value=finished_eval_queue_df,
280
- # headers=EVAL_COLS,
281
- # datatype=EVAL_TYPES,
282
- # row_count=5,
283
- # )
284
- # with gr.Accordion(
285
- # f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
286
- # open=False,
287
- # ):
288
- # with gr.Row():
289
- # running_eval_table = gr.components.Dataframe(
290
- # value=running_eval_queue_df,
291
- # headers=EVAL_COLS,
292
- # datatype=EVAL_TYPES,
293
- # row_count=5,
294
- # )
295
- #
296
- # with gr.Accordion(
297
- # f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
298
- # open=False,
299
- # ):
300
- # with gr.Row():
301
- # pending_eval_table = gr.components.Dataframe(
302
- # value=pending_eval_queue_df,
303
- # headers=EVAL_COLS,
304
- # datatype=EVAL_TYPES,
305
- # row_count=5,
306
- # )
307
- # with gr.Row():
308
- # gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
309
- #
310
- # with gr.Row():
311
- # with gr.Column():
312
- # model_name_textbox = gr.Textbox(label="Model name")
313
- # revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
314
- # model_type = gr.Dropdown(
315
- # choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
316
- # label="Model type",
317
- # multiselect=False,
318
- # value=None,
319
- # interactive=True,
320
- # )
321
- #
322
- # with gr.Column():
323
- # precision = gr.Dropdown(
324
- # choices=[i.value.name for i in Precision if i != Precision.Unknown],
325
- # label="Precision",
326
- # multiselect=False,
327
- # value="float16",
328
- # interactive=True,
329
- # )
330
- # weight_type = gr.Dropdown(
331
- # choices=[i.value.name for i in WeightType],
332
- # label="Weights type",
333
- # multiselect=False,
334
- # value="Original",
335
- # interactive=True,
336
- # )
337
- # base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
338
- #
339
- # submit_button = gr.Button("Submit Eval")
340
- # submission_result = gr.Markdown()
341
- # submit_button.click(
342
- # add_new_eval,
343
- # [
344
- # model_name_textbox,
345
- # base_model_name_textbox,
346
- # revision_name_textbox,
347
- # precision,
348
- # weight_type,
349
- # model_type,
350
- # ],
351
- # submission_result,
352
- # )
353
- #
354
- # with gr.Row():
355
- # with gr.Accordion("📙 Citation", open=False):
356
- # citation_button = gr.Textbox(
357
- # value=CITATION_BUTTON_TEXT,
358
- # label=CITATION_BUTTON_LABEL,
359
- # lines=20,
360
- # elem_id="citation-button",
361
- # show_copy_button=True,
362
- # )
363
  return app
364
 
365
 
366
  def main():
 
367
  app = build_app()
368
  scheduler = BackgroundScheduler()
369
- scheduler.add_job(restart_space, "interval", seconds=1800)
370
  scheduler.start()
371
  app.queue(default_concurrency_limit=40).launch()
372
 
 
2
  import pandas as pd
3
  from about import (
4
  INTRODUCTION_TEXT,
 
5
  TITLE,
6
  )
7
  from apscheduler.schedulers.background import BackgroundScheduler
8
  from display.css_html_js import custom_css
9
  from display.utils import (
 
10
  COLS,
 
 
11
  TYPES,
12
  AutoEvalColumn,
 
 
13
  fields,
14
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
+ from parser import update_leaderboard_table
17
+ from populate import get_leaderboard_df
18
+ from settings import (
19
+ get_settings,
20
+ )
21
 
22
+ settings = get_settings()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
 
 
 
 
 
24
 
25
 
26
+ def filter_table(
 
27
  hidden_df: pd.DataFrame,
28
  columns: list,
 
 
 
29
  show_deleted: bool,
30
  query: str,
31
+ ) -> pd.DataFrame:
32
+ filtered_df = filter_models(hidden_df, show_deleted)
33
  filtered_df = filter_queries(query, filtered_df)
34
  df = select_columns(filtered_df, columns)
35
  return df
 
41
 
42
  def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
43
  always_here_cols = [
44
+ AutoEvalColumn.model.name.lower(),
 
45
  ]
46
+ s = [c for c in COLS if c in df.columns and c in columns]
47
+ filtered_df = df[always_here_cols + s]
48
  return filtered_df
49
 
50
 
 
63
  filtered_df = filtered_df.drop_duplicates(
64
  subset=[
65
  AutoEvalColumn.model.name,
 
 
66
  ]
67
  )
 
68
  return filtered_df
69
 
70
 
71
  def filter_models(
72
  df: pd.DataFrame,
 
 
 
73
  show_deleted: bool,
74
  ) -> pd.DataFrame:
 
75
  if show_deleted:
76
  filtered_df = df
77
+ else:
78
+ filtered_df = df[df[AutoEvalColumn.is_private.name]]
 
 
 
 
 
 
 
 
 
79
 
80
  return filtered_df
81
 
82
 
83
+ def get_leaderboard() -> gr.TabItem:
84
+ with gr.TabItem("🏅 Encodechka", elem_id="llm-benchmark-tab-table", id=0) as leaderboard_tab:
85
+ with gr.Row():
86
+ with gr.Column():
 
 
 
87
  with gr.Row():
88
+ search_bar = gr.Textbox(
89
+ placeholder=" 🔍 Search for your model (separate multiple queries with `;`) "
90
+ "and press ENTER...",
91
+ show_label=False,
92
+ elem_id="search-bar",
93
+ )
94
+ with gr.Row():
95
+ shown_columns = gr.CheckboxGroup(
96
+ choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden],
97
+ value=[
98
+ c.name
99
+ for c in fields(AutoEvalColumn)
100
+ if c.displayed_by_default and not c.hidden and not c.never_hidden
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
  ],
102
+ label="Select columns to show",
103
+ elem_id="column-select",
104
+ interactive=True,
105
+ )
106
+ with gr.Row():
107
+ private_models_visibility = gr.Checkbox(
108
+ value=True,
109
+ label="Show private models",
110
+ interactive=True,
111
  )
112
 
113
+ leaderboard_table = gr.Dataframe(
114
+ value=get_leaderboard_df(),
115
+ headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
116
+ datatype=TYPES,
117
+ elem_id="leaderboard-table",
118
+ interactive=False,
119
+ visible=True,
120
+ )
121
+
122
+ hidden_leaderboard_table_for_search = gr.Dataframe(
123
+ value=get_leaderboard_df(),
124
+ headers=COLS,
125
+ datatype=TYPES,
126
+ visible=False,
127
+ )
128
+ search_bar.submit(
129
+ filter_table,
130
+ [
131
+ hidden_leaderboard_table_for_search,
132
+ shown_columns,
133
+ private_models_visibility,
134
+ search_bar,
135
+ ],
136
+ leaderboard_table,
137
+ )
138
+ for selector in [
139
+ shown_columns,
140
+ private_models_visibility,
141
+ ]:
142
+ selector.change(
143
+ filter_table,
144
+ [
145
+ hidden_leaderboard_table_for_search,
146
+ shown_columns,
147
+ private_models_visibility,
148
+ search_bar,
149
+ ],
150
+ leaderboard_table,
151
+ queue=True,
152
+ )
153
+ return leaderboard_tab
154
 
155
+
156
+ def build_app() -> gr.Blocks:
157
+ with gr.Blocks(css=custom_css) as app:
158
+ gr.HTML(TITLE)
159
+ gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
160
+ get_leaderboard()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161
  return app
162
 
163
 
164
  def main():
165
+ update_leaderboard_table()
166
  app = build_app()
167
  scheduler = BackgroundScheduler()
168
+ scheduler.add_job(update_leaderboard_table, "interval", days=1)
169
  scheduler.start()
170
  app.queue(default_concurrency_limit=40).launch()
171
 
src/encodechka/display/formatting.py CHANGED
@@ -5,7 +5,9 @@ def model_hyperlink(link, model_name):
5
  )
6
 
7
 
8
- def make_clickable_model(model_name):
 
 
9
  link = f"https://huggingface.co/{model_name}"
10
  return model_hyperlink(link, model_name)
11
 
 
5
  )
6
 
7
 
8
+ def make_clickable_model(model_name: str) -> str:
9
+ if model_name.find("/") == -1:
10
+ return model_name
11
  link = f"https://huggingface.co/{model_name}"
12
  return model_hyperlink(link, model_name)
13
 
src/encodechka/display/utils.py CHANGED
@@ -21,135 +21,37 @@ class ColumnContent:
21
  never_hidden: bool = False
22
 
23
 
24
- ## Leaderboard columns
25
  auto_eval_column_dict = [
26
- (
27
- "model_type_symbol",
28
- ColumnContent,
29
- ColumnContent("T", "str", True, never_hidden=True),
30
- ),
31
  (
32
  "model",
33
  ColumnContent,
34
- ColumnContent("Model", "markdown", True, never_hidden=True),
35
  ),
36
- ]
37
- # Scores
38
- auto_eval_column_dict.append(("average", ColumnContent, ColumnContent("Average ⬆️", "number", True)))
39
- for task in Tasks:
40
- auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
41
- # Model information
42
- auto_eval_column_dict.append(("model_type", ColumnContent, ColumnContent("Type", "str", False)))
43
- auto_eval_column_dict.append(("architecture", ColumnContent, ColumnContent("Architecture", "str", False)))
44
- auto_eval_column_dict.append(("weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)))
45
- auto_eval_column_dict.append(("precision", ColumnContent, ColumnContent("Precision", "str", False)))
46
- auto_eval_column_dict.append(("license", ColumnContent, ColumnContent("Hub License", "str", False)))
47
- auto_eval_column_dict.append(("params", ColumnContent, ColumnContent("#Params (B)", "number", False)))
48
- auto_eval_column_dict.append(("likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)))
49
- auto_eval_column_dict.append(
50
  (
51
- "still_on_hub",
52
- ColumnContent,
53
- ColumnContent("Available on the hub", "bool", False),
54
- )
55
- )
56
- auto_eval_column_dict.append(("revision", ColumnContent, ColumnContent("Model sha", "str", False, False)))
57
-
 
 
 
 
 
 
 
 
 
 
 
58
  # We use make dataclass to dynamically fill the scores from Tasks
59
  AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
60
 
61
-
62
- ## For the queue columns in the submission tab
63
- @dataclass(frozen=True)
64
- class EvalQueueColumn: # Queue column
65
- model = ColumnContent("model", "markdown", True)
66
- revision = ColumnContent("revision", "str", True)
67
- private = ColumnContent("private", "bool", True)
68
- precision = ColumnContent("precision", "str", True)
69
- weight_type = ColumnContent("weight_type", "str", "Original")
70
- status = ColumnContent("status", "str", True)
71
-
72
-
73
- ## All the model information that we might need
74
- @dataclass
75
- class ModelDetails:
76
- name: str
77
- display_name: str = ""
78
- symbol: str = "" # emoji
79
-
80
-
81
- class ModelType(Enum):
82
- PT = ModelDetails(name="pretrained", symbol="🟢")
83
- FT = ModelDetails(name="fine-tuned", symbol="🔶")
84
- IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
85
- RL = ModelDetails(name="RL-tuned", symbol="🟦")
86
- Unknown = ModelDetails(name="", symbol="?")
87
-
88
- def to_str(self, separator=" "):
89
- return f"{self.value.symbol}{separator}{self.value.name}"
90
-
91
- @staticmethod
92
- def from_str(type):
93
- if "fine-tuned" in type or "🔶" in type:
94
- return ModelType.FT
95
- if "pretrained" in type or "🟢" in type:
96
- return ModelType.PT
97
- if "RL-tuned" in type or "🟦" in type:
98
- return ModelType.RL
99
- if "instruction-tuned" in type or "⭕" in type:
100
- return ModelType.IFT
101
- return ModelType.Unknown
102
-
103
-
104
- class WeightType(Enum):
105
- Adapter = ModelDetails("Adapter")
106
- Original = ModelDetails("Original")
107
- Delta = ModelDetails("Delta")
108
-
109
-
110
- class Precision(Enum):
111
- float16 = ModelDetails("float16")
112
- bfloat16 = ModelDetails("bfloat16")
113
- float32 = ModelDetails("float32")
114
- # qt_8bit = ModelDetails("8bit")
115
- # qt_4bit = ModelDetails("4bit")
116
- # qt_GPTQ = ModelDetails("GPTQ")
117
- Unknown = ModelDetails("?")
118
-
119
- def from_str(precision):
120
- if precision in ["torch.float16", "float16"]:
121
- return Precision.float16
122
- if precision in ["torch.bfloat16", "bfloat16"]:
123
- return Precision.bfloat16
124
- if precision in ["float32"]:
125
- return Precision.float32
126
- # if precision in ["8bit"]:
127
- # return Precision.qt_8bit
128
- # if precision in ["4bit"]:
129
- # return Precision.qt_4bit
130
- # if precision in ["GPTQ", "None"]:
131
- # return Precision.qt_GPTQ
132
- return Precision.Unknown
133
-
134
-
135
- # Column selection
136
  COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
137
  TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
138
  COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
139
  TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
140
 
141
- EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
142
- EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
143
-
144
  BENCHMARK_COLS = [t.value.col_name for t in Tasks]
145
-
146
- NUMERIC_INTERVALS = {
147
- "?": pd.Interval(-1, 0, closed="right"),
148
- "~1.5": pd.Interval(0, 2, closed="right"),
149
- "~3": pd.Interval(2, 4, closed="right"),
150
- "~7": pd.Interval(4, 9, closed="right"),
151
- "~13": pd.Interval(9, 20, closed="right"),
152
- "~35": pd.Interval(20, 45, closed="right"),
153
- "~60": pd.Interval(45, 70, closed="right"),
154
- "70+": pd.Interval(70, 10000, closed="right"),
155
- }
 
21
  never_hidden: bool = False
22
 
23
 
 
24
  auto_eval_column_dict = [
 
 
 
 
 
25
  (
26
  "model",
27
  ColumnContent,
28
+ ColumnContent("model", "markdown", True, never_hidden=True),
29
  ),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  (
31
+ "CPU", ColumnContent, ColumnContent("CPU", "number", True)
32
+ ), ("GPU", ColumnContent, ColumnContent("GPU", "number", True)),
33
+ ("size", ColumnContent, ColumnContent("size", "number", True)),
34
+ ("MeanS", ColumnContent, ColumnContent("Mean S", "number", True)),
35
+ ("MeanSW", ColumnContent, ColumnContent("Mean S+W", "number", True)),
36
+ ("dim", ColumnContent, ColumnContent("dim", "number", True)),
37
+ ("STS", ColumnContent, ColumnContent("STS", "number", True)),
38
+ ("PI", ColumnContent, ColumnContent("PI", "number", True)),
39
+ ("NLI", ColumnContent, ColumnContent("NLI", "number", True)),
40
+ ("SA", ColumnContent, ColumnContent("SA", "number", True)),
41
+ ("TI", ColumnContent, ColumnContent("TI", "number", True)),
42
+ ("II", ColumnContent, ColumnContent("II", "number", True)),
43
+ ("IC", ColumnContent, ColumnContent("IC", "number", True)),
44
+ ("ICX", ColumnContent, ColumnContent("ICX", "number", True)),
45
+ ("NE1", ColumnContent, ColumnContent("NE1", "number", True)),
46
+ ("NE2", ColumnContent, ColumnContent("NE2", "number", True)),
47
+ ("is_private", ColumnContent, ColumnContent("is_private", "boolean", True, hidden=True)),
48
+ ]
49
  # We use make dataclass to dynamically fill the scores from Tasks
50
  AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
  COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
53
  TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
54
  COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
55
  TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
56
 
 
 
 
57
  BENCHMARK_COLS = [t.value.col_name for t in Tasks]
 
 
 
 
 
 
 
 
 
 
 
src/encodechka/envs.py DELETED
@@ -1,25 +0,0 @@
1
- import os
2
-
3
- from huggingface_hub import HfApi
4
-
5
- # Info to change for your repository
6
- # ----------------------------------
7
- TOKEN = os.environ.get("TOKEN") # A read/write token for your org
8
-
9
- OWNER = "demo-leaderboard-backend"
10
- # ----------------------------------
11
-
12
- REPO_ID = f"{OWNER}/leaderboard"
13
- QUEUE_REPO = f"{OWNER}/requests"
14
- RESULTS_REPO = f"{OWNER}/results"
15
-
16
- # If you setup a cache later, just change HF_HOME
17
- CACHE_PATH = os.getenv("HF_HOME", ".")
18
-
19
- # Local caches
20
- EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
21
- EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
22
- EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
23
- EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
24
-
25
- API = HfApi(token=TOKEN)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/encodechka/leaderboard/__init__.py DELETED
File without changes
src/encodechka/leaderboard/read_evals.py DELETED
@@ -1,193 +0,0 @@
1
- import glob
2
- import json
3
- import os
4
- from dataclasses import dataclass
5
-
6
- import dateutil
7
- import numpy as np
8
- from display.formatting import make_clickable_model
9
- from display.utils import AutoEvalColumn, ModelType, Precision, Tasks, WeightType
10
-
11
-
12
- @dataclass
13
- class EvalResult:
14
- """Represents one full evaluation. Built from a combination of the result and request file for a given run."""
15
-
16
- eval_name: str # org_model_precision (uid)
17
- full_model: str # org/model (path on hub)
18
- org: str
19
- model: str
20
- revision: str # commit hash, "" if main
21
- results: dict
22
- precision: Precision = Precision.Unknown
23
- model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
24
- weight_type: WeightType = WeightType.Original # Original or Adapter
25
- architecture: str = "Unknown"
26
- license: str = "?"
27
- likes: int = 0
28
- num_params: int = 0
29
- date: str = "" # submission date of request file
30
- still_on_hub: bool = False
31
-
32
- @classmethod
33
- def init_from_json_file(self, json_filepath):
34
- """Inits the result from the specific model result file"""
35
- with open(json_filepath) as fp:
36
- data = json.load(fp)
37
-
38
- config = data.get("config")
39
-
40
- # Precision
41
- precision = Precision.from_str(config.get("model_dtype"))
42
-
43
- # Get model and org
44
- org_and_model = config.get("model_name", config.get("model_args", None))
45
- org_and_model = org_and_model.split("/", 1)
46
-
47
- if len(org_and_model) == 1:
48
- org = None
49
- model = org_and_model[0]
50
- result_key = f"{model}_{precision.value.name}"
51
- else:
52
- org = org_and_model[0]
53
- model = org_and_model[1]
54
- result_key = f"{org}_{model}_{precision.value.name}"
55
- full_model = "/".join(org_and_model)
56
-
57
- # still_on_hub, _, model_config = is_model_on_hub(
58
- # full_model,
59
- # config.get("model_sha", "main"),
60
- # trust_remote_code=True,
61
- # test_tokenizer=False,
62
- # )
63
- # architecture = "?"
64
- # if model_config is not None:
65
- # architectures = getattr(model_config, "architectures", None)
66
- # if architectures:
67
- # architecture = ";".join(architectures)
68
-
69
- # Extract results available in this file (some results are split in several files)
70
- results = {}
71
- for task in Tasks:
72
- task = task.value
73
-
74
- # We average all scores of a given metric (not all metrics are present in all files)
75
- accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
76
- if accs.size == 0 or any([acc is None for acc in accs]):
77
- continue
78
-
79
- mean_acc = np.mean(accs) * 100.0
80
- results[task.benchmark] = mean_acc
81
-
82
- return self(
83
- eval_name=result_key,
84
- full_model=full_model,
85
- org=org,
86
- model=model,
87
- results=results,
88
- precision=precision,
89
- revision=config.get("model_sha", ""),
90
- # still_on_hub=still_on_hub,
91
- # architecture=architecture,
92
- )
93
-
94
- def update_with_request_file(self, requests_path):
95
- """Finds the relevant request file for the current model and updates info with it"""
96
- request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
97
-
98
- try:
99
- with open(request_file) as f:
100
- request = json.load(f)
101
- self.model_type = ModelType.from_str(request.get("model_type", ""))
102
- self.weight_type = WeightType[request.get("weight_type", "Original")]
103
- self.license = request.get("license", "?")
104
- self.likes = request.get("likes", 0)
105
- self.num_params = request.get("params", 0)
106
- self.date = request.get("submitted_time", "")
107
- except Exception:
108
- print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
109
-
110
- def to_dict(self):
111
- """Converts the Eval Result to a dict compatible with our dataframe display"""
112
- average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
113
- data_dict = {
114
- "eval_name": self.eval_name, # not a column, just a save name,
115
- AutoEvalColumn.precision.name: self.precision.value.name,
116
- AutoEvalColumn.model_type.name: self.model_type.value.name,
117
- AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
118
- AutoEvalColumn.weight_type.name: self.weight_type.value.name,
119
- AutoEvalColumn.architecture.name: self.architecture,
120
- AutoEvalColumn.model.name: make_clickable_model(self.full_model),
121
- AutoEvalColumn.revision.name: self.revision,
122
- AutoEvalColumn.average.name: average,
123
- AutoEvalColumn.license.name: self.license,
124
- AutoEvalColumn.likes.name: self.likes,
125
- AutoEvalColumn.params.name: self.num_params,
126
- AutoEvalColumn.still_on_hub.name: self.still_on_hub,
127
- }
128
-
129
- for task in Tasks:
130
- data_dict[task.value.col_name] = self.results[task.value.benchmark]
131
-
132
- return data_dict
133
-
134
-
135
- def get_request_file_for_model(requests_path, model_name, precision):
136
- """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
137
- request_files = os.path.join(
138
- requests_path,
139
- f"{model_name}_eval_request_*.json",
140
- )
141
- request_files = glob.glob(request_files)
142
-
143
- # Select correct request file (precision)
144
- request_file = ""
145
- request_files = sorted(request_files, reverse=True)
146
- for tmp_request_file in request_files:
147
- with open(tmp_request_file) as f:
148
- req_content = json.load(f)
149
- if req_content["status"] in ["FINISHED"] and req_content["precision"] == precision.split(".")[-1]:
150
- request_file = tmp_request_file
151
- return request_file
152
-
153
-
154
- def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
155
- """From the path of the results folder root, extract all needed info for results"""
156
- model_result_filepaths = []
157
-
158
- for root, _, files in os.walk(results_path):
159
- # We should only have json files in model results
160
- if len(files) == 0 or any([not f.endswith(".json") for f in files]):
161
- continue
162
-
163
- # Sort the files by date
164
- try:
165
- files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
166
- except dateutil.parser._parser.ParserError:
167
- files = [files[-1]]
168
-
169
- for file in files:
170
- model_result_filepaths.append(os.path.join(root, file))
171
-
172
- eval_results = {}
173
- for model_result_filepath in model_result_filepaths:
174
- # Creation of result
175
- eval_result = EvalResult.init_from_json_file(model_result_filepath)
176
- eval_result.update_with_request_file(requests_path)
177
-
178
- # Store results of same eval together
179
- eval_name = eval_result.eval_name
180
- if eval_name in eval_results.keys():
181
- eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
182
- else:
183
- eval_results[eval_name] = eval_result
184
-
185
- results = []
186
- for v in eval_results.values():
187
- try:
188
- v.to_dict() # we test if the dict version is complete
189
- results.append(v)
190
- except KeyError: # not all eval values present
191
- continue
192
-
193
- return results
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/encodechka/parser.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from io import StringIO
2
+
3
+ import pandas as pd
4
+ import markdown
5
+ import requests
6
+ from settings import get_settings
7
+
8
+
9
+ def get_readme() -> str:
10
+ url = "https://raw.githubusercontent.com/avidale/encodechka/master/README.md"
11
+ response = requests.get(url)
12
+ return response.text
13
+
14
+
15
+ def get_readme_html() -> str:
16
+ return markdown.markdown(get_readme(), extensions=['tables'])
17
+
18
+
19
+ def get_readme_df() -> pd.DataFrame:
20
+ performance, leaderboard = pd.read_html(StringIO(get_readme_html()))
21
+ performance = performance.set_index("model")
22
+ leaderboard = leaderboard.set_index("model")
23
+ df = pd.concat([performance, leaderboard], axis=1)
24
+ return df
25
+
26
+
27
+ def update_leaderboard_table() -> None:
28
+ df = get_readme_df()
29
+ df.to_csv(get_settings().LEADERBOARD_FILE_PATH)
src/encodechka/populate.py CHANGED
@@ -1,60 +1,13 @@
1
- import json
2
- import os
3
- from typing import Any
4
-
5
  import pandas as pd
6
- from display.formatting import has_no_nan_values, make_clickable_model
7
- from display.utils import AutoEvalColumn, EvalQueueColumn
8
- from leaderboard.read_evals import EvalResult, get_raw_eval_results
9
-
10
-
11
- def get_leaderboard_df(
12
- results_path: str, requests_path: str, cols: list, benchmark_cols: list
13
- ) -> tuple[list[EvalResult], Any]:
14
- """Creates a dataframe from all the individual experiment results"""
15
- raw_data = get_raw_eval_results(results_path, requests_path)
16
- all_data_json = [v.to_dict() for v in raw_data]
17
-
18
- df = pd.DataFrame.from_records(all_data_json)
19
- df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
20
- df = df[cols].round(decimals=2)
21
-
22
- # filter out if any of the benchmarks have not been produced
23
- df = df[has_no_nan_values(df, benchmark_cols)]
24
- return raw_data, df
25
 
 
 
 
26
 
27
- def get_evaluation_queue_df(save_path: str, cols: list) -> tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
28
- """Creates the different dataframes for the evaluation queues requestes"""
29
- entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
30
- all_evals = []
31
 
32
- for entry in entries:
33
- if ".json" in entry:
34
- file_path = os.path.join(save_path, entry)
35
- with open(file_path) as fp:
36
- data = json.load(fp)
37
-
38
- data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
39
- data[EvalQueueColumn.revision.name] = data.get("revision", "main")
40
-
41
- all_evals.append(data)
42
- elif ".md" not in entry:
43
- # this is a folder
44
- sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
45
- for sub_entry in sub_entries:
46
- file_path = os.path.join(save_path, entry, sub_entry)
47
- with open(file_path) as fp:
48
- data = json.load(fp)
49
-
50
- data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
51
- data[EvalQueueColumn.revision.name] = data.get("revision", "main")
52
- all_evals.append(data)
53
-
54
- pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
55
- running_list = [e for e in all_evals if e["status"] == "RUNNING"]
56
- finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
57
- df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
58
- df_running = pd.DataFrame.from_records(running_list, columns=cols)
59
- df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
60
- return df_finished[cols], df_running[cols], df_pending[cols]
 
 
 
 
 
1
  import pandas as pd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
+ from display.formatting import make_clickable_model
4
+ from display.utils import AutoEvalColumn
5
+ from settings import Settings
6
 
 
 
 
 
7
 
8
+ def get_leaderboard_df() -> pd.DataFrame:
9
+ """Creates a dataframe from all the individual experiment results"""
10
+ df = pd.read_csv(Settings().LEADERBOARD_FILE_PATH).sort_values(by="STS", ascending=False)
11
+ df[AutoEvalColumn.is_private.name] = df["model"].apply(lambda x: "/" in x)
12
+ df["model"] = df["model"].apply(make_clickable_model)
13
+ return df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/encodechka/settings.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ from huggingface_hub import HfApi
4
+ from pydantic_settings import BaseSettings
5
+
6
+
7
+ class Settings(BaseSettings):
8
+ # TOKEN: str
9
+ OWNER: str = "Samoed"
10
+ REPO_ID: str = f"{OWNER}/Encodechka"
11
+ QUEUE_REPO: str = f"{OWNER}/requests"
12
+ RESULTS_REPO: str = f"{OWNER}/results"
13
+ CACHE_PATH: str = "."
14
+ EVAL_REQUESTS_PATH: str = os.path.join(CACHE_PATH, "eval-queue")
15
+ EVAL_RESULTS_PATH: str = os.path.join(CACHE_PATH, "eval-results")
16
+ EVAL_REQUESTS_PATH_BACKEND: str = os.path.join(CACHE_PATH, "eval-queue-bk")
17
+ EVAL_RESULTS_PATH_BACKEND: str = os.path.join(CACHE_PATH, "eval-results-bk")
18
+ ENCODECHKA_URL: str = "https://raw.githubusercontent.com/avidale/encodechka/master/README.md"
19
+ LEADERBOARD_FILE_PATH: str = os.path.join(CACHE_PATH, "leaderboard.csv")
20
+
21
+
22
+ def get_settings():
23
+ return Settings()
24
+
25
+
26
+ # API = HfApi(token=get_settings().TOKEN)
src/encodechka/submission/__init__.py DELETED
File without changes
src/encodechka/submission/check_validity.py DELETED
@@ -1,131 +0,0 @@
1
- # import json
2
- # import os
3
- # from collections import defaultdict
4
- #
5
- # import huggingface_hub
6
- # from huggingface_hub import ModelCard
7
- # from huggingface_hub.hf_api import ModelInfo
8
- # from transformers import AutoConfig
9
- # from transformers.models.auto.tokenization_auto import AutoTokenizer
10
- #
11
- #
12
- # def check_model_card(repo_id: str) -> tuple[bool, str]:
13
- # """Checks if the model card and license exist and have been filled"""
14
- # try:
15
- # card = ModelCard.load(repo_id)
16
- # except huggingface_hub.utils.EntryNotFoundError:
17
- # return (
18
- # False,
19
- # "Please add a model card to your model to explain how you trained/fine-tuned it.",
20
- # )
21
- #
22
- # # Enforce license metadata
23
- # if card.data.license is None:
24
- # if not ("license_name" in card.data and "license_link" in card.data):
25
- # return False, (
26
- # "License not found. Please add a license to your model card using the `license` metadata or a"
27
- # " `license_name`/`license_link` pair."
28
- # )
29
- #
30
- # # Enforce card content
31
- # if len(card.text) < 200:
32
- # return False, "Please add a description to your model card, it is too short."
33
- #
34
- # return True, ""
35
- #
36
- #
37
- def is_model_on_hub(
38
- model_name: str,
39
- revision: str,
40
- token: str | None = None,
41
- trust_remote_code=False,
42
- test_tokenizer=False,
43
- ) -> tuple[bool, str]:
44
- """Checks if the model model_name is on the hub,
45
- and whether it (and its tokenizer) can be loaded with AutoClasses."""
46
- raise NotImplementedError("Replace with huggingface_hub API")
47
- # try:
48
- # config = AutoConfig.from_pretrained(
49
- # model_name,
50
- # revision=revision,
51
- # trust_remote_code=trust_remote_code,
52
- # token=token,
53
- # )
54
- # if test_tokenizer:
55
- # try:
56
- # tk = AutoTokenizer.from_pretrained(
57
- # model_name,
58
- # revision=revision,
59
- # trust_remote_code=trust_remote_code,
60
- # token=token,
61
- # )
62
- # except ValueError as e:
63
- # return (
64
- # False,
65
- # f"uses a tokenizer which is not in a transformers release: {e}",
66
- # None,
67
- # )
68
- # except Exception:
69
- # return (
70
- # False,
71
- # "'s tokenizer cannot be loaded. Is your tokenizer class in a
72
- # stable transformers release, and correctly configured?",
73
- # None,
74
- # )
75
- # return True, None, config
76
- #
77
- # except ValueError:
78
- # return (
79
- # False,
80
- # "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow
81
- # these models to be automatically submitted to the leaderboard.",
82
- # None,
83
- # )
84
- #
85
- # except Exception:
86
- # return False, "was not found on hub!", None
87
-
88
-
89
- #
90
- #
91
- # def get_model_size(model_info: ModelInfo, precision: str):
92
- # """Gets the model size from the configuration, or the model name if the
93
- # configuration does not contain the information."""
94
- # try:
95
- # model_size = round(model_info.safetensors["total"] / 1e9, 3)
96
- # except (AttributeError, TypeError):
97
- # return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
98
- #
99
- # size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
100
- # model_size = size_factor * model_size
101
- # return model_size
102
- #
103
- #
104
- # def get_model_arch(model_info: ModelInfo):
105
- # """Gets the model architecture from the configuration"""
106
- # return model_info.config.get("architectures", "Unknown")
107
- #
108
- #
109
- # def already_submitted_models(requested_models_dir: str) -> set[str]:
110
- # """Gather a list of already submitted models to avoid duplicates"""
111
- # depth = 1
112
- # file_names = []
113
- # users_to_submission_dates = defaultdict(list)
114
- #
115
- # for root, _, files in os.walk(requested_models_dir):
116
- # current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
117
- # if current_depth == depth:
118
- # for file in files:
119
- # if not file.endswith(".json"):
120
- # continue
121
- # with open(os.path.join(root, file)) as f:
122
- # info = json.load(f)
123
- # file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
124
- #
125
- # # Select organisation
126
- # if info["model"].count("/") == 0 or "submitted_time" not in info:
127
- # continue
128
- # organisation, _ = info["model"].split("/")
129
- # users_to_submission_dates[organisation].append(info["submitted_time"])
130
- #
131
- # return set(file_names), users_to_submission_dates
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/encodechka/submission/submit.py DELETED
@@ -1,125 +0,0 @@
1
- # import json
2
- # import os
3
- # from datetime import datetime, timezone
4
- #
5
- # from ..display.formatting import styled_error, styled_message, styled_warning
6
- # from ..envs import API, EVAL_REQUESTS_PATH, QUEUE_REPO, TOKEN
7
- # from .check_validity import (
8
- # already_submitted_models,
9
- # check_model_card,
10
- # get_model_size,
11
- # is_model_on_hub,
12
- # )
13
- #
14
- # REQUESTED_MODELS = None
15
- # USERS_TO_SUBMISSION_DATES = None
16
- #
17
- #
18
- # def add_new_eval(
19
- # model: str,
20
- # base_model: str,
21
- # revision: str,
22
- # precision: str,
23
- # weight_type: str,
24
- # model_type: str,
25
- # ):
26
- # global REQUESTED_MODELS
27
- # global USERS_TO_SUBMISSION_DATES
28
- # if not REQUESTED_MODELS:
29
- # REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
30
- #
31
- # user_name = ""
32
- # model_path = model
33
- # if "/" in model:
34
- # user_name = model.split("/")[0]
35
- # model_path = model.split("/")[1]
36
- #
37
- # precision = precision.split(" ")[0]
38
- # current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
39
- #
40
- # if model_type is None or model_type == "":
41
- # return styled_error("Please select a model type.")
42
- #
43
- # # Does the model actually exist?
44
- # if revision == "":
45
- # revision = "main"
46
- #
47
- # # Is the model on the hub?
48
- # if weight_type in ["Delta", "Adapter"]:
49
- # base_model_on_hub, error, _ = is_model_on_hub(
50
- # model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True
51
- # )
52
- # if not base_model_on_hub:
53
- # return styled_error(f'Base model "{base_model}" {error}')
54
- #
55
- # if not weight_type == "Adapter":
56
- # model_on_hub, error, _ = is_model_on_hub(
57
- # model_name=model, revision=revision, token=TOKEN, test_tokenizer=True
58
- # )
59
- # if not model_on_hub:
60
- # return styled_error(f'Model "{model}" {error}')
61
- #
62
- # # Is the model info correctly filled?
63
- # try:
64
- # model_info = API.model_info(repo_id=model, revision=revision)
65
- # except Exception:
66
- # return styled_error("Could not get your model information. Please fill it up properly.")
67
- #
68
- # model_size = get_model_size(model_info=model_info, precision=precision)
69
- #
70
- # # Were the model card and license filled?
71
- # try:
72
- # license = model_info.cardData["license"]
73
- # except Exception:
74
- # return styled_error("Please select a license for your model")
75
- #
76
- # modelcard_OK, error_msg = check_model_card(model)
77
- # if not modelcard_OK:
78
- # return styled_error(error_msg)
79
- #
80
- # # Seems good, creating the eval
81
- # print("Adding new eval")
82
- #
83
- # eval_entry = {
84
- # "model": model,
85
- # "base_model": base_model,
86
- # "revision": revision,
87
- # "precision": precision,
88
- # "weight_type": weight_type,
89
- # "status": "PENDING",
90
- # "submitted_time": current_time,
91
- # "model_type": model_type,
92
- # "likes": model_info.likes,
93
- # "params": model_size,
94
- # "license": license,
95
- # "private": False,
96
- # }
97
- #
98
- # # Check for duplicate submission
99
- # if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
100
- # return styled_warning("This model has been already submitted.")
101
- #
102
- # print("Creating eval file")
103
- # OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
104
- # os.makedirs(OUT_DIR, exist_ok=True)
105
- # out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
106
- #
107
- # with open(out_path, "w") as f:
108
- # f.write(json.dumps(eval_entry))
109
- #
110
- # print("Uploading eval file")
111
- # API.upload_file(
112
- # path_or_fileobj=out_path,
113
- # path_in_repo=out_path.split("eval-queue/")[1],
114
- # repo_id=QUEUE_REPO,
115
- # repo_type="dataset",
116
- # commit_message=f"Add {model} to eval queue",
117
- # )
118
- #
119
- # # Remove the local file
120
- # os.remove(out_path)
121
- #
122
- # return styled_message(
123
- # "Your request has been submitted to the evaluation queue!\n
124
- # Please wait for up to an hour for the model to show in the PENDING list."
125
- # )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tests/cassettes/test_parser.yaml ADDED
@@ -0,0 +1,343 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ interactions:
2
+ - request:
3
+ body: null
4
+ headers:
5
+ Accept:
6
+ - '*/*'
7
+ Accept-Encoding:
8
+ - gzip, deflate
9
+ Connection:
10
+ - keep-alive
11
+ User-Agent:
12
+ - python-requests/2.32.3
13
+ method: GET
14
+ uri: https://raw.githubusercontent.com/avidale/encodechka/master/README.md
15
+ response:
16
+ body:
17
+ string: "# encodechka\n## encodechka-eval\n\n\u042D\u0442\u043E\u0442 \u0440\u0435\u043F\u043E\u0437\u0438\u0442\u043E\u0440\u0438\u0439
18
+ - \u0440\u0430\u0437\u0432\u0438\u0442\u0438\u0435 \u043F\u043E\u0434\u0445\u043E\u0434\u0430
19
+ \u043A \u043E\u0446\u0435\u043D\u043A\u0435 \u043C\u043E\u0434\u0435\u043B\u0435\u0439
20
+ \u0438\u0437 \u043F\u043E\u0441\u0442\u0430\n[\u041C\u0430\u043B\u0435\u043D\u044C\u043A\u0438\u0439
21
+ \u0438 \u0431\u044B\u0441\u0442\u0440\u044B\u0439 BERT \u0434\u043B\u044F
22
+ \u0440\u0443\u0441\u0441\u043A\u043E\u0433\u043E \u044F\u0437\u044B\u043A\u0430](https://habr.com/ru/post/562064),
23
+ \n\u044D\u0432\u043E\u043B\u044E\u0446\u0438\u043E\u043D\u0438\u0440\u043E\u0432\u0430\u0432\u0448\u0435\u0433\u043E
24
+ \u0432 [\u0420\u0435\u0439\u0442\u0438\u043D\u0433 \u0440\u0443\u0441\u0441\u043A\u043E\u044F\u0437\u044B\u0447\u043D\u044B\u0445
25
+ \u044D\u043D\u043A\u043E\u0434\u0435\u0440\u043E\u0432 \u043F\u0440\u0435\u0434\u043B\u043E\u0436\u0435\u043D\u0438\u0439](https://habr.com/ru/post/669674/).\n\u0418\u0434\u0435\u044F
26
+ \u0432 \u0442\u043E\u043C, \u0447\u0442\u043E\u0431\u044B \u043F\u043E\u043D\u044F\u0442\u044C,
27
+ \u043A\u0430\u043A \u0445\u043E\u0440\u043E\u0448\u043E \u0440\u0430\u0437\u043D\u044B\u0435
28
+ \u043C\u043E\u0434\u0435\u043B\u0438 \u043F\u0440\u0435\u0432\u0440\u0430\u0449\u0430\u044E\u0442
29
+ \u043A\u043E\u0440\u043E\u0442\u043A\u0438\u0435 \u0442\u0435\u043A\u0441\u0442\u044B\n\u0432
30
+ \u043E\u0441\u043C\u044B\u0441\u043B\u0435\u043D\u043D\u044B\u0435 \u0432\u0435\u043A\u0442\u043E\u0440\u044B.\n\n\u041F\u043E\u0445\u043E\u0436\u0438\u0435
31
+ \u043F\u0440\u043E\u0435\u043A\u0442\u044B:\n* [RussianSuperGLUE](https://russiansuperglue.com/):
32
+ \u0444\u043E\u043A\u0443\u0441 \u043D\u0430 \u0434\u043E\u043E\u0431\u0443\u0447\u0430\u0435\u043C\u044B\u0445
33
+ \u043C\u043E\u0434\u0435\u043B\u044F\u0445\n* [MOROCCO](https://github.com/RussianNLP/MOROCCO/):
34
+ RussianSuperGLUE + \u043E\u0446\u0435\u043D\u043A\u0430 \u043F\u0440\u043E\u0438\u0437\u0432\u043E\u0434\u0438\u0442\u0435\u043B\u044C\u043D\u043E\u0441\u0442\u0438,
35
+ \u0442\u0440\u0443\u0434\u043D\u043E\u0432\u043E\u0441\u043F\u0440\u043E\u0438\u0437\u0432\u043E\u0434\u0438\u043C\n*
36
+ [RuSentEval](https://github.com/RussianNLP/RuSentEval): \u0431\u043E\u043B\u0435\u0435
37
+ \u0430\u043A\u0430\u0434\u0435\u043C\u0438\u0447\u0435\u0441\u043A\u0438\u0435/\u043B\u0438\u043D\u0433\u0432\u0438\u0441\u0442\u0438\u0447\u0435\u0441\u043A\u0438\u0435
38
+ \u0437\u0430\u0434\u0430\u0447\u0438\n* \u0421\u0442\u0430\u0442\u044C\u044F
39
+ \u043E\u0442 \u0412\u044B\u0448\u043A\u0438 [Popov et al, 2019](https://arxiv.org/abs/1910.13291):
40
+ \u043F\u0435\u0440\u0432\u0430\u044F \u043D\u0430\u0443\u0447\u043D\u0430\u044F
41
+ \u0441\u0442\u0430\u0442\u044C\u044F \u043D\u0430 \u044D\u0442\u0443 \u0442\u0435\u043C\u0443,
42
+ \u043D\u043E \u043C\u0430\u043B\u043E\u0432\u0430\u0442\u043E \u043C\u043E\u0434\u0435\u043B\u0435\u0439
43
+ \u0438 \u0437\u0430\u0434\u0430\u0447\n* [SentEvalRu](https://github.com/comptechml/SentEvalRu)
44
+ \u0438 [deepPavlovEval](https://github.com/deepmipt/deepPavlovEval): \u0434\u0432\u0430
45
+ \u0445\u043E\u0440\u043E\u0448\u0438\u0445, \u043D\u043E \u0434\u0430\u0432\u043D\u043E
46
+ \u043D\u0435 \u043E\u0431\u043D\u043E\u0432\u043B\u044F\u0432\u0448\u0438\u0445\u0441\u044F
47
+ \u0431\u0435\u043D\u0447\u043C\u0430\u0440\u043A\u0430. \n\n\u041F\u0440\u0438\u043C\u0435\u0440
48
+ \u0437\u0430\u043F\u0443\u0441\u043A\u0430 \u043C\u0435\u0442\u0440\u0438\u043A
49
+ \u2013 \u0432 \u0431\u043B\u043E\u043A\u043D\u043E\u0442\u0435 [evaluation
50
+ example](https://github.com/avidale/encodechka/blob/master/evaluation%20example.ipynb).
51
+ \n\n\u0411\u043B\u043E\u043A\u043D\u043E\u0442 \u0434\u043B\u044F \u0432\u043E\u0441\u043F\u0440\u043E\u0438\u0437\u0432\u0435\u0434\u0435\u043D\u0438\u044F
52
+ \u043B\u0438\u0434\u0435\u0440\u0431\u043E\u0440\u0434\u0430: [v2021](https://colab.research.google.com/drive/1fu2i7A-Yr-85Ex_NvIyeCIO7lN2R7P-k?usp=sharing),
53
+ \n[v2023](https://colab.research.google.com/drive/1t956aJsp5qPnst3379vI8NNRqiqJUFMn?usp=sharing).\n\n###
54
+ \u041B\u0438\u0434\u0435\u0440\u0431\u043E\u0440\u0434\n\n\u0420\u0430\u043D\u0436\u0438\u0440\u043E\u0432\u0430\u043D\u0438\u0435
55
+ \u043C\u043E\u0434\u0435\u043B\u0435\u0439 \u0432 \u043F\u043E \u0441\u0440\u0435\u0434\u043D\u0435\u043C\u0443
56
+ \u043A\u0430\u0447\u0435\u0441\u0442\u0432\u0443 \u0438 \u043F\u0440\u043E\u0438\u0437\u0432\u043E\u0434\u0438\u0442\u0435\u043B\u044C\u043D\u043E\u0441\u0442\u0438.
57
+ \n\u041F\u043E\u0434\u0441\u0432\u0435\u0447\u0435\u043D\u044B \u041F\u0430\u0440\u0435\u0442\u043E-\u043E\u043F\u0442\u0438\u043C\u0430\u043B\u044C\u043D\u044B\u0435
58
+ \u043C\u043E\u0434\u0435\u043B\u0438 \u043F\u043E \u043A\u0430\u0436\u0434\u043E\u043C\u0443
59
+ \u0438\u0437 \u043A\u0440\u0438\u0442\u0435\u0440\u0438\u0435\u0432. \n\n|
60
+ model | CPU |
61
+ GPU | size | Mean S | Mean S+W | dim |\n|:------------------------------------------------------------|:----------|:---------|:--------------|---------:|:-----------|------:|\n|
62
+ BAAI/bge-m3 | 523.4 |
63
+ 22.5 | **2166.0** | 0.787 | 0.696 | 1024 |\n| intfloat/multilingual-e5-large-instruct
64
+ \ | 501.5 | 25.71 | **2136.0** | 0.784 | 0.684
65
+ \ | 1024 |\n| intfloat/multilingual-e5-large |
66
+ **506.8** | **30.8** | **2135.9389** | 0.78 | 0.686 | 1024 |\n|
67
+ sentence-transformers/paraphrase-multilingual-mpnet-base-v2 | **20.5** |
68
+ **19.9** | **1081.8485** | 0.762 | | 768 |\n| intfloat/multilingual-e5-base
69
+ \ | 130.61 | 14.39 | **1061.0** | 0.761
70
+ | 0.669 | 768 |\n| intfloat/multilingual-e5-small |
71
+ 40.86 | 12.09 | **449.0** | 0.742 | 0.645 | 384 |\n|
72
+ symanto/sn-xlm-roberta-base-snli-mnli-anli-xnli | **20.2** |
73
+ **16.5** | **1081.8474** | 0.739 | | 768 |\n| cointegrated/LaBSE-en-ru
74
+ \ | 133.4 | **15.3** | **489.6621**
75
+ \ | 0.739 | 0.668 | 768 |\n| sentence-transformers/LaBSE |
76
+ 135.1 | **13.3** | 1796.5078 | 0.739 | 0.667 | 768 |\n|
77
+ MUSE-3 | 200.1 |
78
+ 30.7 | **303.0** | 0.736 | | 512 |\n| text-embedding-ada-002
79
+ \ | ? | | ? |
80
+ \ 0.734 | | 1536 |\n| sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
81
+ | **18.2** | 14.9 | 479.2547 | 0.734 | | 384 |\n|
82
+ sentence-transformers/distiluse-base-multilingual-cased-v1 | **11.8** |
83
+ **8.0** | 517.7452 | 0.722 | | 512 |\n| SONAR |
84
+ ? | ? | 3060.0 | 0.721 | | 1024 |\n|
85
+ facebook/nllb-200-distilled-600M | 252.3 |
86
+ 15.9 | 1577.4828 | 0.709 | 0.64 | 1024 |\n| sentence-transformers/distiluse-base-multilingual-cased-v2
87
+ \ | **11.2** | 9.2 | 517.7453 | 0.708 | | 512 |\n|
88
+ cointegrated/rubert-tiny2 | **6.2** |
89
+ **4.6** | **111.3823** | 0.704 | 0.638 | 312 |\n| ai-forever/sbert_large_mt_nlu_ru
90
+ \ | 504.5 | 29.7 | 1628.6539 | 0.703
91
+ | 0.626 | 1024 |\n| laser |
92
+ 192.5 | 13.5 | 200.0 | 0.699 | | 1024 |\n|
93
+ laser2 | 163.4 |
94
+ 8.6 | 175.0 | 0.694 | | 1024 |\n| ai-forever/sbert_large_nlu_ru
95
+ \ | 497.7 | 29.9 | 1628.6539 | 0.688
96
+ | 0.626 | 1024 |\n| clips/mfaq |
97
+ 18.1 | 18.2 | 1081.8576 | 0.687 | | 768 |\n|
98
+ cointegrated/rut5-base-paraphraser | 137.0 |
99
+ 15.6 | 412.0015 | 0.685 | 0.634 | 768 |\n| DeepPavlov/rubert-base-cased-sentence
100
+ \ | 128.4 | 13.2 | 678.5215 | 0.678 |
101
+ 0.612 | 768 |\n| DeepPavlov/distilrubert-base-cased-conversational
102
+ \ | 64.2 | 10.4 | 514.002 | 0.676 | 0.624 |
103
+ \ 768 |\n| DeepPavlov/distilrubert-tiny-cased-conversational |
104
+ 21.2 | **3.3** | 405.8292 | 0.67 | 0.616 | 768 |\n|
105
+ cointegrated/rut5-base-multitask | 136.9 |
106
+ 12.7 | 412.0015 | 0.668 | 0.623 | 768 |\n| ai-forever/ruRoberta-large
107
+ \ | 512.3 | 25.5 | 1355.7162 |
108
+ \ 0.666 | 0.609 | 1024 |\n| DeepPavlov/rubert-base-cased-conversational
109
+ \ | 127.5 | 16.3 | 678.5215 | 0.653 | 0.606
110
+ \ | 768 |\n| deepvk/deberta-v1-base |
111
+ 128.6 | 19.0 | 473.2402 | 0.653 | 0.591 | 768 |\n|
112
+ cointegrated/rubert-tiny | 7.5 |
113
+ 5.9 | **44.97** | 0.645 | 0.575 | 312 |\n| ai-forever/FRED-T5-large
114
+ \ | 479.4 | 23.3 | 1372.9988 |
115
+ \ 0.639 | 0.551 | 1024 |\n| inkoziev/sbert_synonymy |
116
+ 6.9 | 4.2 | 111.3823 | 0.637 | 0.566 | 312 |\n|
117
+ numind/NuNER-multilingual-v0.1 | 186.9 |
118
+ 10 | 678.0 | 0.633 | 0.572 | 768 |\n| cointegrated/rubert-tiny-toxicity
119
+ \ | 10 | 5.5 | 47.2 | 0.621
120
+ | 0.553 | 312 |\n| ft_geowac_full |
121
+ **0.3** | | 1910.0 | 0.617 | 0.55 | 300 |\n|
122
+ bert-base-multilingual-cased | 141.4 |
123
+ 13.7 | 678.5215 | 0.614 | 0.565 | 768 |\n| ai-forever/ruT5-large
124
+ \ | 489.6 | 20.2 | 1277.7571
125
+ \ | 0.61 | 0.578 | 1024 |\n| cointegrated/rut5-small |
126
+ 37.6 | 8.6 | 111.3162 | 0.602 | 0.564 | 512 |\n|
127
+ ft_geowac_21mb | 1.2 |
128
+ \ | **21.0** | 0.597 | 0.531 | 300 |\n| inkoziev/sbert_pq
129
+ \ | 7.4 | 4.2 | 111.3823
130
+ \ | 0.596 | 0.526 | 312 |\n| ai-forever/ruT5-base |
131
+ 126.3 | 12.8 | 418.2325 | 0.571 | 0.544 | 768 |\n|
132
+ hashing_1000_char | 0.5 |
133
+ \ | **1.0** | 0.557 | 0.464 | 1000 |\n| cointegrated/rut5-base
134
+ \ | 127.8 | 15.5 | 412.0014 |
135
+ \ 0.554 | 0.53 | 768 |\n| hashing_300_char |
136
+ 0.8 | | 1.0 | 0.529 | 0.433 | 300 |\n|
137
+ hashing_1000 | **0.2** |
138
+ \ | 1.0 | 0.513 | 0.416 | 1000 |\n| hashing_300
139
+ \ | 0.3 | |
140
+ 1.0 | 0.491 | 0.397 | 300 |\n\n\u0420\u0430\u043D\u0436\u0438\u0440\u043E\u0432\u0430\u043D\u0438\u0435
141
+ \u043C\u043E\u0434\u0435\u043B\u0435\u0439 \u043F\u043E \u0437\u0430\u0434\u0430\u0447\u0430\u043C.\n\u041F\u043E\u0434\u0441\u0432\u0435\u0447\u0435\u043D\u044B
142
+ \u043D\u0430\u0438\u043B\u0443\u0447\u0448\u0438\u0435 \u043C\u043E\u0434\u0435\u043B\u0438
143
+ \u043F\u043E \u043A\u0430\u0436\u0434\u043E\u0439 \u0438\u0437 \u0437\u0430\u0434\u0430\u0447.
144
+ \n\n| model | STS |
145
+ PI | NLI | SA | TI | IA | IC | ICX |
146
+ NE1 | NE2 |\n|:------------------------------------------------------------|:---------|:---------|:---------|:---------|:---------|:---------|:---------|:---------|:---------|:---------|\n|
147
+ BAAI/bge-m3 | **0.86** | **0.75**
148
+ | 0.51 | **0.82** | 0.97 | 0.79 | 0.81 | **0.78** | 0.24 |
149
+ 0.42 |\n| intfloat/multilingual-e5-large-instruct |
150
+ 0.86 | 0.74 | 0.47 | 0.81 | 0.98 | 0.8 | **0.82**
151
+ | 0.77 | 0.21 | 0.35 |\n| intfloat/multilingual-e5-large |
152
+ 0.86 | 0.73 | 0.47 | 0.81 | 0.98 | 0.8 | 0.82 |
153
+ 0.77 | 0.24 | 0.37 |\n| sentence-transformers/paraphrase-multilingual-mpnet-base-v2
154
+ | 0.85 | 0.66 | 0.54 | 0.79 | 0.95 | 0.78 | 0.79 |
155
+ 0.74 | | |\n| intfloat/multilingual-e5-base |
156
+ 0.83 | 0.7 | 0.46 | 0.8 | 0.96 | 0.78 | 0.8 |
157
+ 0.74 | 0.23 | 0.38 |\n| intfloat/multilingual-e5-small |
158
+ 0.82 | 0.71 | 0.46 | 0.76 | 0.96 | 0.76 | 0.78 |
159
+ 0.69 | 0.23 | 0.27 |\n| symanto/sn-xlm-roberta-base-snli-mnli-anli-xnli
160
+ \ | 0.76 | 0.6 | **0.86** | 0.76 | 0.91 | 0.72
161
+ \ | 0.71 | 0.6 | | |\n| cointegrated/LaBSE-en-ru
162
+ \ | 0.79 | 0.66 | 0.43 | 0.76
163
+ \ | 0.95 | 0.77 | 0.79 | 0.77 | 0.35 | 0.42 |\n|
164
+ sentence-transformers/LaBSE | 0.79 | 0.66
165
+ \ | 0.43 | 0.76 | 0.95 | 0.77 | 0.79 | 0.76 | 0.35
166
+ \ | 0.41 |\n| MUSE-3 |
167
+ 0.81 | 0.61 | 0.42 | 0.77 | 0.96 | 0.79 | 0.77 |
168
+ 0.75 | | |\n| text-embedding-ada-002 |
169
+ 0.78 | 0.66 | 0.44 | 0.77 | 0.96 | 0.77 | 0.75 |
170
+ 0.73 | | |\n| sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
171
+ | 0.84 | 0.62 | 0.5 | 0.76 | 0.92 | 0.74 | 0.77 |
172
+ 0.72 | | |\n| sentence-transformers/distiluse-base-multilingual-cased-v1
173
+ \ | 0.8 | 0.6 | 0.43 | 0.75 | 0.94 | 0.76 | 0.76
174
+ \ | 0.74 | | |\n| SONAR |
175
+ 0.71 | 0.58 | 0.41 | 0.77 | 0.98 | 0.79 | 0.78 |
176
+ 0.74 | | |\n| facebook/nllb-200-distilled-600M |
177
+ 0.71 | 0.54 | 0.41 | 0.76 | 0.95 | 0.76 | 0.8 |
178
+ 0.75 | 0.31 | 0.42 |\n| sentence-transformers/distiluse-base-multilingual-cased-v2
179
+ \ | 0.79 | 0.55 | 0.42 | 0.75 | 0.91 | 0.75 | 0.76
180
+ \ | 0.73 | | |\n| cointegrated/rubert-tiny2 |
181
+ 0.75 | 0.65 | 0.42 | 0.74 | 0.94 | 0.75 | 0.76 |
182
+ 0.64 | 0.36 | 0.39 |\n| ai-forever/sbert_large_mt_nlu_ru |
183
+ 0.78 | 0.65 | 0.4 | 0.8 | 0.98 | 0.8 | 0.76 |
184
+ 0.45 | 0.3 | 0.34 |\n| laser |
185
+ 0.75 | 0.6 | 0.41 | 0.73 | 0.96 | 0.72 | 0.72 |
186
+ 0.7 | | |\n| laser2 |
187
+ 0.74 | 0.6 | 0.41 | 0.73 | 0.95 | 0.72 | 0.72 |
188
+ 0.69 | | |\n| ai-forever/sbert_large_nlu_ru |
189
+ 0.68 | 0.62 | 0.39 | 0.78 | 0.98 | 0.8 | 0.78 |
190
+ 0.48 | 0.36 | 0.4 |\n| clips/mfaq |
191
+ 0.63 | 0.59 | 0.35 | 0.79 | 0.95 | 0.74 | 0.76 |
192
+ 0.69 | | |\n| cointegrated/rut5-base-paraphraser |
193
+ 0.65 | 0.53 | 0.4 | 0.78 | 0.95 | 0.75 | 0.75 |
194
+ 0.67 | 0.45 | 0.41 |\n| DeepPavlov/rubert-base-cased-sentence
195
+ \ | 0.74 | 0.66 | 0.49 | 0.75 | 0.92
196
+ \ | 0.75 | 0.72 | 0.39 | 0.36 | 0.34 |\n| DeepPavlov/distilrubert-base-cased-conversational
197
+ \ | 0.7 | 0.56 | 0.39 | 0.76 | 0.98 | 0.78 |
198
+ 0.76 | 0.48 | 0.4 | 0.43 |\n| DeepPavlov/distilrubert-tiny-cased-conversational
199
+ \ | 0.7 | 0.55 | 0.4 | 0.74 | 0.98 | 0.78 |
200
+ 0.76 | 0.45 | 0.35 | 0.44 |\n| cointegrated/rut5-base-multitask
201
+ \ | 0.65 | 0.54 | 0.38 | 0.76 |
202
+ 0.95 | 0.75 | 0.72 | 0.59 | 0.47 | 0.41 |\n| ai-forever/ruRoberta-large
203
+ \ | 0.7 | 0.6 | 0.35 | 0.78 |
204
+ 0.98 | 0.8 | 0.78 | 0.32 | 0.3 | **0.46** |\n| DeepPavlov/rubert-base-cased-conversational
205
+ \ | 0.68 | 0.52 | 0.38 | 0.73 | 0.98 |
206
+ 0.78 | 0.75 | 0.42 | 0.41 | 0.43 |\n| deepvk/deberta-v1-base
207
+ \ | 0.68 | 0.54 | 0.38 | 0.76
208
+ \ | 0.98 | 0.8 | 0.78 | 0.29 | 0.29 | 0.4 |\n|
209
+ cointegrated/rubert-tiny | 0.66 | 0.53
210
+ \ | 0.4 | 0.71 | 0.89 | 0.68 | 0.7 | 0.58 | 0.24
211
+ \ | 0.34 |\n| ai-forever/FRED-T5-large |
212
+ 0.62 | 0.44 | 0.37 | 0.78 | 0.98 | **0.81** | 0.67 |
213
+ 0.45 | 0.25 | 0.15 |\n| inkoziev/sbert_synonymy |
214
+ 0.69 | 0.49 | 0.41 | 0.71 | 0.91 | 0.72 | 0.69 |
215
+ 0.47 | 0.32 | 0.24 |\n| numind/NuNER-multilingual-v0.1 |
216
+ 0.67 | 0.53 | 0.4 | 0.71 | 0.89 | 0.72 | 0.7 |
217
+ 0.46 | 0.32 | 0.34 |\n| cointegrated/rubert-tiny-toxicity |
218
+ 0.57 | 0.44 | 0.37 | 0.68 | **1.0** | 0.78 | 0.7 |
219
+ 0.43 | 0.24 | 0.32 |\n| ft_geowac_full |
220
+ 0.69 | 0.53 | 0.37 | 0.72 | 0.97 | 0.76 | 0.66 |
221
+ 0.26 | 0.22 | 0.34 |\n| bert-base-multilingual-cased |
222
+ 0.66 | 0.53 | 0.37 | 0.7 | 0.89 | 0.7 | 0.69 |
223
+ 0.38 | 0.36 | 0.38 |\n| ai-forever/ruT5-large |
224
+ 0.51 | 0.39 | 0.35 | 0.77 | 0.97 | 0.79 | 0.72 |
225
+ 0.38 | 0.46 | 0.44 |\n| cointegrated/rut5-small |
226
+ 0.61 | 0.53 | 0.34 | 0.73 | 0.92 | 0.71 | 0.7 |
227
+ 0.27 | 0.44 | 0.38 |\n| ft_geowac_21mb |
228
+ 0.68 | 0.52 | 0.36 | 0.72 | 0.96 | 0.74 | 0.65 |
229
+ 0.15 | 0.21 | 0.32 |\n| inkoziev/sbert_pq |
230
+ 0.57 | 0.41 | 0.38 | 0.7 | 0.92 | 0.69 | 0.68 |
231
+ 0.43 | 0.26 | 0.24 |\n| ai-forever/ruT5-base |
232
+ 0.5 | 0.28 | 0.34 | 0.73 | 0.97 | 0.76 | 0.7 |
233
+ 0.29 | 0.45 | 0.41 |\n| hashing_1000_char |
234
+ 0.7 | 0.53 | 0.4 | 0.7 | 0.84 | 0.59 | 0.63 |
235
+ 0.05 | 0.05 | 0.14 |\n| cointegrated/rut5-base |
236
+ 0.44 | 0.28 | 0.33 | 0.74 | 0.92 | 0.75 | 0.58 |
237
+ 0.39 | **0.48** | 0.39 |\n| hashing_300_char |
238
+ 0.69 | 0.51 | 0.39 | 0.67 | 0.75 | 0.57 | 0.61 |
239
+ 0.04 | 0.03 | 0.08 |\n| hashing_1000 |
240
+ 0.63 | 0.49 | 0.39 | 0.66 | 0.77 | 0.55 | 0.57 |
241
+ 0.05 | 0.02 | 0.04 |\n| hashing_300 |
242
+ 0.61 | 0.48 | 0.4 | 0.64 | 0.71 | 0.54 | 0.5 |
243
+ 0.05 | 0.02 | 0.02 |\n\n#### \u0417\u0430\u0434\u0430\u0447\u0438\n-
244
+ Semantic text similarity (**STS**) \u043D\u0430 \u043E\u0441\u043D\u043E\u0432\u0435
245
+ \u043F\u0435\u0440\u0435\u0432\u0435\u0434\u0451\u043D\u043D\u043E\u0433\u043E
246
+ \u0434\u0430\u0442\u0430\u0441\u0435\u0442\u0430 [STS-B](https://huggingface.co/datasets/stsb_multi_mt);\n-
247
+ Paraphrase identification (**PI**) \u043D\u0430 \u043E\u0441\u043D\u043E\u0432\u0435
248
+ \u0434\u0430\u0442\u0430\u0441\u0435\u0442\u0430 paraphraser.ru;\n- Natural
249
+ language inference (**NLI**) \u043D\u0430 \u0434\u0430\u0442\u0430\u0441\u0435\u0442\u0435
250
+ [XNLI](https://github.com/facebookresearch/XNLI);\n- Sentiment analysis (**SA**)
251
+ \u043D\u0430 \u0434\u0430\u043D\u043D\u044B\u0445 [SentiRuEval2016](http://www.dialog-21.ru/evaluation/2016/sentiment/).\n-
252
+ Toxicity identification (**TI**) \u043D\u0430 \u0434\u0430\u0442\u0430\u0441\u0435\u0442\u0435
253
+ \u0442\u043E\u043A\u0441\u0438\u0447\u043D\u044B\u0445 \u043A\u043E\u043C\u043C\u0435\u043D\u0442\u0430\u0440\u0438\u0435\u0432
254
+ \u0438\u0437 [OKMLCup](https://cups.mail.ru/ru/contests/okmlcup2020);\n- Inappropriateness
255
+ identification (**II**) \u043D\u0430 [\u0434\u0430\u0442\u0430\u0441\u0435\u0442\u0435
256
+ \u0421\u043A\u043E\u043B\u0442\u0435\u0445\u0430](https://github.com/skoltech-nlp/inappropriate-sensitive-topics);\n-
257
+ Intent classification (**IC**) \u0438 \u0435\u0451 \u043A\u0440\u043E\u0441\u0441-\u044F\u0437\u044B\u0447\u043D\u0430\u044F
258
+ \u0432\u0435\u0440\u0441\u0438\u044F **ICX** \u043D\u0430 \u0434\u0430\u0442\u0430\u0441\u0435\u0442\u0435
259
+ [NLU-evaluation-data](https://github.com/xliuhw/NLU-Evaluation-Data), \u043A\u043E\u0442\u043E\u0440\u044B\u0439
260
+ \u044F \u0430\u0432\u0442\u043E\u043C\u0430\u0442\u0438\u0447\u0435\u0441\u043A\u0438
261
+ \u043F\u0435\u0440\u0435\u0432\u0451\u043B \u043D\u0430 \u0440\u0443\u0441\u0441\u043A\u0438\u0439.
262
+ \u0412 IC \u043A\u043B\u0430\u0441\u0441\u0438\u0444\u0438\u043A\u0430\u0442\u043E\u0440
263
+ \u043E\u0431\u0443\u0447\u0430\u0435\u0442\u0441\u044F \u043D\u0430 \u0440\u0443\u0441\u0441\u043A\u0438\u0445
264
+ \u0434\u0430\u043D\u043D\u044B\u0445, \u0430 \u0432 ICX \u2013 \u043D\u0430
265
+ \u0430\u043D\u0433\u043B\u0438\u0439\u0441\u043A\u0438\u0445, \u0430 \u0442\u0435\u0441\u0442\u0438\u0440\u0443\u0435\u0442\u0441\u044F
266
+ \u0432 \u043E\u0431\u043E\u0438\u0445 \u0441\u043B\u0443\u0447\u0430\u044F\u0445
267
+ \u043D\u0430 \u0440\u0443\u0441\u0441\u043A\u0438\u0445.\n- \u0420\u0430\u0441\u043F\u043E\u0437\u043D\u0430\u0432\u0430\u043D\u0438\u0435
268
+ \u0438\u043C\u0435\u043D\u043E\u0432\u0430\u043D\u043D\u044B\u0445 \u0441\u0443\u0449\u043D\u043E\u0441\u0442\u0435\u0439
269
+ \u043D\u0430 \u0434\u0430\u0442\u0430\u0441\u0435\u0442\u0430\u0445 [factRuEval-2016](https://github.com/dialogue-evaluation/factRuEval-2016)
270
+ (**NE1**) \u0438 [RuDReC](https://github.com/cimm-kzn/RuDReC) (**NE2**). \u042D\u0442\u0438
271
+ \u0434\u0432\u0435 \u0437\u0430\u0434\u0430\u0447\u0438 \u0442\u0440\u0435\u0431\u0443\u044E\u0442
272
+ \u043F\u043E\u043B\u0443\u0447\u0430\u0442\u044C \u044D\u043C\u0431\u0435\u0434\u0434\u0438\u043D\u0433\u0438
273
+ \u043E\u0442\u0434\u0435\u043B\u044C\u043D\u044B\u0445 \u0442\u043E\u043A\u0435\u043D\u043E\u0432,
274
+ \u0430 \u043D\u0435 \u0446\u0435\u043B\u044B\u0445 \u043F\u0440\u0435\u0434\u043B\u043E\u0436\u0435\u043D\u0438\u0439;
275
+ \u043F\u043E\u044D\u0442\u043E\u043C\u0443 \u0442\u0430\u043C \u0443\u0447\u0430\u0441\u0442\u0432\u0443\u044E\u0442
276
+ \u043D\u0435 \u0432\u0441\u0435 \u043C\u043E\u0434\u0435\u043B\u0438.\n\n###
277
+ Changelog\n* \u0410\u0432\u0433\u0443\u0441\u0442 2023 - \u043E\u0431\u043D\u043E\u0432\u0438\u043B
278
+ \u0440\u0435\u0439\u0442\u0438\u043D\u0433:\n * \u043F\u043E\u043F\u0440\u0430\u0432\u0438\u0432
279
+ \u043E\u0448\u0438\u0431\u043A\u0443 \u0432 \u0432\u044B\u0447\u0438\u0441\u043B\u0435\u043D\u0438\u0438
280
+ mean token embeddings\n * \u0434\u043E\u0431\u0430\u0432\u0438\u043B \u043D\u0435\u0441\u043A\u043E\u043B\u044C\u043A\u043E
281
+ \u043C\u043E\u0434\u0435\u043B\u0435\u0439, \u0432\u043A\u043B\u044E\u0447\u0430\u044F
282
+ \u043D\u043E\u0432\u043E\u0433\u043E \u043B\u0438\u0434\u0435\u0440\u0430
283
+ - `intfloat/multilingual-e5-large`\n * \u043F\u043E \u043F\u0440\u043E\u0441\u044C\u0431\u0430\u043C
284
+ \u0442\u0440\u0443\u0434\u044F\u0449\u0438\u0445\u0441\u044F, \u0434\u043E\u0431\u0430\u0432\u0438\u043B
285
+ `text-embedding-ada-002` (\u0440\u0430\u0437\u043C\u0435\u0440 \u0438 \u043F\u0440\u043E\u0438\u0437\u0432\u043E\u0434\u0438\u0442\u0435\u043B\u044C\u043D\u043E\u0441\u0442\u044C
286
+ \u0443\u043A\u0430\u0437\u0430\u043D\u044B \u043E\u0442 \u0431\u0430\u043B\u0434\u044B)\n*
287
+ \u041B\u0435\u0442\u043E 2022 - \u043E\u043F\u0443\u0431\u043B\u0438\u043A\u043E\u0432\u0430\u043B
288
+ \u043F\u0435\u0440\u0432\u044B\u0439 \u0440\u0435\u0439\u0442\u0438\u043D\u0433\n"
289
+ headers:
290
+ Accept-Ranges:
291
+ - bytes
292
+ Access-Control-Allow-Origin:
293
+ - '*'
294
+ Cache-Control:
295
+ - max-age=300
296
+ Connection:
297
+ - keep-alive
298
+ Content-Encoding:
299
+ - gzip
300
+ Content-Length:
301
+ - '4972'
302
+ Content-Security-Policy:
303
+ - default-src 'none'; style-src 'unsafe-inline'; sandbox
304
+ Content-Type:
305
+ - text/plain; charset=utf-8
306
+ Cross-Origin-Resource-Policy:
307
+ - cross-origin
308
+ Date:
309
+ - Thu, 13 Jun 2024 17:29:26 GMT
310
+ ETag:
311
+ - W/"6ef42cd6939559c9e297cd85ab8b8a44b6ce19809ce92e1efcf39d06809cd99a"
312
+ Expires:
313
+ - Thu, 13 Jun 2024 17:34:26 GMT
314
+ Source-Age:
315
+ - '245'
316
+ Strict-Transport-Security:
317
+ - max-age=31536000
318
+ Vary:
319
+ - Authorization,Accept-Encoding,Origin
320
+ Via:
321
+ - 1.1 varnish
322
+ X-Cache:
323
+ - HIT
324
+ X-Cache-Hits:
325
+ - '0'
326
+ X-Content-Type-Options:
327
+ - nosniff
328
+ X-Fastly-Request-ID:
329
+ - 0b5812cb6e8627abe030f2ff2764205ee7247b21
330
+ X-Frame-Options:
331
+ - deny
332
+ X-GitHub-Request-Id:
333
+ - 3467:253C76:A903D8:B1E9A7:666B25FA
334
+ X-Served-By:
335
+ - cache-ams21038-AMS
336
+ X-Timer:
337
+ - S1718299767.633243,VS0,VE2
338
+ X-XSS-Protection:
339
+ - 1; mode=block
340
+ status:
341
+ code: 200
342
+ message: OK
343
+ version: 1
tests/test_parser.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import pytest
3
+ from src.encodechka import parser
4
+
5
+
6
+ @pytest.mark.vcr
7
+ def test_parser():
8
+ df = parser.get_readme_df()
9
+ assert isinstance(df, pd.DataFrame)
10
+ assert df.shape[1] == 16