| # LANGCHAIN IMPORTS | |
| from langchain import PromptTemplate, LLMChain | |
| from langchain.embeddings import HuggingFaceEmbeddings | |
| from langchain.chains import RetrievalQAWithSourcesChain | |
| from langchain.chains.qa_with_sources import load_qa_with_sources_chain | |
| # CLIMATEQA | |
| from climateqa.retriever import ClimateQARetriever | |
| from climateqa.vectorstore import get_pinecone_vectorstore | |
| from climateqa.chains import load_climateqa_chain | |
| class ClimateQA: | |
| def __init__(self,hf_embedding_model = "sentence-transformers/multi-qa-mpnet-base-dot-v1", | |
| show_progress_bar = False,batch_size = 1,max_tokens = 1024,**kwargs): | |
| self.llm = self.get_llm(max_tokens = max_tokens,**kwargs) | |
| self.embeddings_function = HuggingFaceEmbeddings( | |
| model_name=hf_embedding_model, | |
| encode_kwargs={"show_progress_bar":show_progress_bar,"batch_size":batch_size} | |
| ) | |
| def get_vectorstore(self): | |
| pass | |
| def reformulate(self): | |
| pass | |
| def retrieve(self): | |
| pass | |
| def ask(self): | |
| pass |