SameerArz commited on
Commit
fb3bd84
1 Parent(s): d620284

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +129 -0
app.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import joblib
3
+
4
+ model_path = 'Best_model.joblib'
5
+ loaded_model = joblib.load(model_path)
6
+
7
+
8
+ # Preprocess input function
9
+ def preprocess_input(input_data):
10
+ age = input_data['age']
11
+ bmi = input_data.get('bmi', None)
12
+ height = input_data.get('height', None)
13
+ weight = input_data.get('weight', None)
14
+ children = input_data['children']
15
+
16
+ # Convert height to meters based on the selected unit
17
+ height_unit = input_data.get('height_unit', 'meters')
18
+ if height is not None and height_unit != 'meters':
19
+ if height_unit == 'centimeters':
20
+ height /= 100
21
+ elif height_unit == 'feet':
22
+ height *= 0.3048 # 1 foot = 0.3048 meters
23
+
24
+ # Calculate BMI if height and weight are provided and height is not zero
25
+ if height is not None and height != 0 and weight is not None:
26
+ bmi = weight / (height ** 2)
27
+
28
+ # Convert sex to binary representation
29
+ sex_0 = 1 if input_data['sex'] == 'female' else 0
30
+ sex_1 = 1 - sex_0
31
+
32
+ # Convert smoker to binary representation
33
+ smoker_0 = 1 if input_data['smoker'] == 'no' else 0
34
+ smoker_1 = 1 - smoker_0
35
+
36
+ # Map region name to numerical representation
37
+ region_mapping = {'southeast': 1, 'southwest': 2, 'northwest': 3, 'northeast': 4}
38
+ region = region_mapping.get(input_data['region'], 0)
39
+
40
+ # Create binary representations for each region
41
+ region_1 = 1 if region == 1 else 0
42
+ region_2 = 1 if region == 2 else 0
43
+ region_3 = 1 if region == 3 else 0
44
+ region_4 = 1 if region == 4 else 0
45
+
46
+ # Create the formatted input list with 11 features
47
+ formatted_input = [age, bmi, children, sex_0, sex_1, region_1, region_2, region_3, region_4, smoker_0, smoker_1]
48
+
49
+ return formatted_input
50
+
51
+
52
+ # Input page
53
+ def input_page():
54
+ st.title('HealthInsure Claim Amount Predictor')
55
+ st.write('Please fill in the following details:')
56
+
57
+ age = None
58
+ height = None
59
+ weight = None
60
+
61
+ age_warning = ''
62
+ height_warning = ''
63
+ weight_warning = ''
64
+
65
+ age = st.number_input('Age', min_value=0, step=1, value=age)
66
+ if age == 0:
67
+ age_warning = 'Please enter correct age.'
68
+ st.warning(age_warning)
69
+ sex = st.radio('Sex', ('male', 'female'))
70
+
71
+ # Side-by-side input for height unit and height
72
+ col1, col2 = st.columns(2)
73
+ with col1:
74
+ height_unit = st.selectbox('Height Unit', ('meters', 'centimeters', 'feet'))
75
+ with col2:
76
+ height = st.number_input('Height', min_value=0.0, step=0.01, value=height)
77
+ if height == 0:
78
+ height_warning = 'Please enter correct height.'
79
+ st.warning(height_warning)
80
+ weight = st.number_input('Weight (in kg)', min_value=0.0, step=0.1, value=weight)
81
+ if weight == 0:
82
+ weight_warning = 'Please enter correct weight.'
83
+ st.warning(weight_warning)
84
+
85
+ # Calculate BMI immediately after entering height and weight if height is not zero
86
+ bmi = None
87
+ if height is not None and height != 0.0 and weight is not None:
88
+ # Convert height based on selected height unit
89
+ if height_unit != 'meters':
90
+ if height_unit == 'centimeters':
91
+ height /= 100
92
+ elif height_unit == 'feet':
93
+ height *= 0.3048 # 1 foot = 0.3048 meters
94
+
95
+ # Calculate BMI
96
+ bmi = weight / (height ** 2)
97
+ st.write(f'BMI: {bmi:.2f}')
98
+
99
+ children = st.number_input('Number of Children', min_value=0, step=1)
100
+ smoker = st.selectbox('Smoker', ('yes', 'no'))
101
+ region = st.selectbox('Region', ('southeast', 'southwest', 'northwest', 'northeast'))
102
+
103
+ if st.button('Predict'):
104
+ if age_warning or height_warning or weight_warning:
105
+ st.error('Please correct the following input errors:')
106
+ if age_warning:
107
+ st.error(age_warning)
108
+ if height_warning:
109
+ st.error(height_warning)
110
+ if weight_warning:
111
+ st.error(weight_warning)
112
+ else:
113
+ input_data = {'age': age, 'sex': sex, 'height': height, 'weight': weight, 'children': children,
114
+ 'smoker': smoker, 'region': region, 'bmi': bmi, 'height_unit': height_unit}
115
+ processed_input = preprocess_input(input_data)
116
+ charges = loaded_model.predict([processed_input])[0]
117
+ st.write('## Estimated Claim Amount')
118
+ st.write(f'Estimated Claim Amount: {charges:.2f}', unsafe_allow_html=True)
119
+ st.write('The following value is estimated based on historical data and predictive modeling techniques and may not represent the exact amount.')
120
+
121
+
122
+ # Main function
123
+ def main():
124
+ input_page()
125
+
126
+
127
+ if __name__ == '__main__':
128
+ main()
129
+