Commit
·
84accd9
1
Parent(s):
df4a4f8
adapted demo model a little more
Browse files
app.py
CHANGED
@@ -1,34 +1,3 @@
|
|
1 |
import gradio as gr
|
2 |
-
import torch
|
3 |
-
from transformers import AutoTokenizer
|
4 |
-
from model import SentimentClassifier
|
5 |
|
6 |
-
|
7 |
-
model = SentimentClassifier(2)
|
8 |
-
model.load_state_dict(model_state_dict)
|
9 |
-
model.eval()
|
10 |
-
|
11 |
-
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
12 |
-
|
13 |
-
|
14 |
-
def preprocess(text):
|
15 |
-
inputs = tokenizer(text, padding='max_length',
|
16 |
-
truncation=True, max_length=512, return_tensors='pt')
|
17 |
-
return inputs
|
18 |
-
# Define a function to use the model to make predictions
|
19 |
-
def predict(review):
|
20 |
-
inputs = preprocess(review)
|
21 |
-
with torch.no_grad():
|
22 |
-
outputs = model(inputs['input_ids'], inputs['attention_mask'])
|
23 |
-
predicted_class = torch.argmax(outputs[0]).item()
|
24 |
-
if(predicted_class==0):
|
25 |
-
return "It was a negative review"
|
26 |
-
return "It was a positive review"
|
27 |
-
|
28 |
-
# Create a Gradio interface
|
29 |
-
input_text = gr.inputs.Textbox(label="Input Text")
|
30 |
-
output_text = gr.outputs.Textbox(label="Output Text")
|
31 |
-
interface = gr.Interface(fn=predict, inputs=input_text, outputs=output_text)
|
32 |
-
|
33 |
-
# Run the interface
|
34 |
-
interface.launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
|
3 |
+
gr.Interface.load("models/finiteautomata/bertweet-base-sentiment-analysis",interpretation="default").launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|