Commit
·
5f8d01c
1
Parent(s):
e5c3564
ok , so my model was giving negative answer fro both good and bad , so now I ma testing another model.
Browse files
app.py
CHANGED
@@ -39,7 +39,7 @@ with open('tokenizer.json', 'r', encoding='utf-8') as f:
|
|
39 |
|
40 |
tokenizer = tokenizer_from_json(tokenizer_config)
|
41 |
|
42 |
-
model = tf.keras.models.load_model("
|
43 |
|
44 |
def get_sentiment(text):
|
45 |
global model
|
@@ -51,8 +51,8 @@ def get_sentiment(text):
|
|
51 |
text = [stemmer.lemmatize(word) for word in text]
|
52 |
text = ' '.join(text)
|
53 |
text = tokenizer.texts_to_sequences([text])[0]
|
54 |
-
text += [0] * (
|
55 |
-
text = np.array(text).reshape(-1,
|
56 |
x = model.predict(text).tolist()[0][0]
|
57 |
return ('Positive' if x >= 0.5 else 'negative') + ' sentiment!'
|
58 |
|
|
|
39 |
|
40 |
tokenizer = tokenizer_from_json(tokenizer_config)
|
41 |
|
42 |
+
model = tf.keras.models.load_model("model_RNN.h5", custom_objects={'f1':f1, 'recall': recall, 'precision': precision, 'accuracy':accuracy})
|
43 |
|
44 |
def get_sentiment(text):
|
45 |
global model
|
|
|
51 |
text = [stemmer.lemmatize(word) for word in text]
|
52 |
text = ' '.join(text)
|
53 |
text = tokenizer.texts_to_sequences([text])[0]
|
54 |
+
text += [0] * (200 - len(text))
|
55 |
+
text = np.array(text).reshape(-1, 200)
|
56 |
x = model.predict(text).tolist()[0][0]
|
57 |
return ('Positive' if x >= 0.5 else 'negative') + ' sentiment!'
|
58 |
|