Sambhavnoobcoder's picture
Upload app.py
936e46b
import gradio as gr
import numpy as np
import pandas as pd
import torch
from surprise import Reader, Dataset, SVD
from surprise.model_selection import cross_validate
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
def load_model():
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2").to(device)
return model
def encode_and_calculate_similarity(model):
sentence_embeddings = model.encode(df_merged["soup"].tolist())
cos_sim = cosine_similarity(sentence_embeddings)
return cos_sim
def svd():
reader = Reader()
data = Dataset.load_from_df(df_ratings[["userId", "movieId", "rating"]], reader)
svd = SVD()
cross_validate(svd, data, measures=["RMSE", "MAE"], cv=5, verbose=True)
trainset = data.build_full_trainset()
svd.fit(trainset)
return svd
def get_sorted_movie_indices(title: str, cos_sim: np.ndarray) -> list[int]:
"""
Retrieve the sorted indices of movies based on their similarity scores to a given movie.
:param title: The title of the movie to find similar movies for.
:param cos_sim: The cosine similarity matrix of movies.
:return: A list of sorted movie indices.
"""
try:
# Get the index of the movie that matches the title
movie_index = movie_indices[title.lower()]
# If there are multiple movies with the same title, pick the first one.
if isinstance(movie_index, pd.Series):
movie_index = movie_index[0]
except KeyError:
print(f"Movie '{title}' not found. Please enter a valid movie title.")
return None
# Get the pairwise similarity scores of all movies with that movie
sim_scores = list(enumerate(cos_sim[movie_index]))
# Sort the movies based on the similarity scores
sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)[1:]
# Get the movie indices
sorted_movie_indices = [sim_score[0] for sim_score in sim_scores]
return sorted_movie_indices
def get_qualified_movies(
df: pd.DataFrame, df_qualified: pd.DataFrame, sorted_movie_indices: list[int]
) -> pd.DataFrame:
"""
Filter out movies that are not in the qualified movies chart based on IMDB's weighted rating.
:param df: The DataFrame containing movie details.
:param df_qualified: The DataFrame containing qualified movie details.
:param sorted_movie_indices: A list of movie indices sorted by similarity scores.
:return: A Pandas DataFrame containing the qualified movies sorted by similarity scores.
"""
movie_details = [
"id",
"title",
"genres",
"original_language",
"production_countries",
"release_date",
"runtime",
]
sorted_movies = df.loc[sorted_movie_indices, movie_details]
qualified_movies = sorted_movies[sorted_movies["id"].isin(df_qualified["id"])]
return qualified_movies
def predict_user_rating(
userId: int, qualified_movies: pd.DataFrame, indices_map: pd.DataFrame
) -> pd.DataFrame:
"""
Predict the user rating for qualified movies using SVD and return the sorted DataFrame.
:param userId: The ID of the user.
:param qualified_movies: A Pandas DataFrame containing qualified movies data.
:return: A Pandas DataFrame containing the final qualified movies sorted by estimated user ratings.
"""
# Calculate estimated user ratings for qualified movies using SVD
qualified_movies["predicted_user_rating"] = qualified_movies["id"].apply(
lambda x: round(svd.predict(userId, indices_map.loc[x]["movieId"]).est, 2)
)
final_qualified_movies = qualified_movies.sort_values(
by=["predicted_user_rating"], ascending=False
)
return final_qualified_movies
def get_movie_recommendations_hybrid(title: str, userId: int) -> pd.DataFrame:
"""
Get movie recommendations based on a given title and user ID.
:param title: The title of the movie to find similar movies for.
:param userId: The ID of the user.
:return: A Pandas DataFrame containing the recommended movies
"""
# Get recommended movie indices based on the given title
sorted_movie_indices = get_sorted_movie_indices(title, cos_sim)
# Filter out bad movies and select the top 50 qualified movies
qualified_movies = get_qualified_movies(
df_merged, df_qualified, sorted_movie_indices
).head(50)
# Predict user ratings for qualified movies and select the top recommended movies
recommended_movies = predict_user_rating(
userId, qualified_movies, indices_map
).head(5)
recommended_movies.columns = [
"ID",
"Title",
"Genres",
"Language",
"Production Countries",
"Release Date",
"Runtime",
"Predicted User Rating",
]
return recommended_movies
if __name__ == "__main__":
df_qualified = pd.read_csv("data/qualified_movies.csv")
df_ratings = pd.read_csv("data/ratings_small.csv")
df_merged = pd.read_csv("data/df_merged.csv")
model = load_model()
cos_sim = encode_and_calculate_similarity(model)
movie_indices = pd.Series(
df_merged.index, index=df_merged["title"].apply(lambda title: title.lower())
).drop_duplicates()
svd = svd()
indices_map = df_merged.set_index("id")
with gr.Blocks(theme=gr.themes.Soft(text_size="lg")) as demo:
gr.Markdown(
"""
# Movie Recommendation System
"""
)
title = gr.Dropdown(
choices=df_merged["title"].unique().tolist(),
label="Movie Title",
value="Iron Man",
)
user_id = gr.Number(
value=1, label="User ID", info="Please enter a number between 1 and 671!"
)
recommend_button = gr.Button("Get Movie Recommendations")
recommended_movies = gr.DataFrame(label="Movie Recommendations")
recommend_button.click(
get_movie_recommendations_hybrid,
inputs=[title, user_id],
outputs=recommended_movies,
)
examples = gr.Examples(
examples=[
"Captain America: The First Avenger",
"The Conjuring",
"Toy Story",
"Final Destination 5",
],
inputs=[title],
)
demo.launch()