Spaces:
Runtime error
Runtime error
import functools | |
import inspect | |
import sys | |
import os | |
import traceback | |
import typing | |
from utils import set_seed, flatten_list, clear_torch_cache, system_info_print, zip_data, save_generate_output | |
SEED = 1236 | |
set_seed(SEED) | |
os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1' | |
from typing import Union | |
import numpy as np | |
import pandas as pd | |
import fire | |
import torch | |
from peft import PeftModel | |
from transformers import GenerationConfig, StoppingCriteriaList, AutoModel | |
from accelerate import init_empty_weights, infer_auto_device_map | |
from prompter import Prompter | |
from finetune import get_loaders, example_data_points, generate_prompt, get_githash, prompt_types_strings, \ | |
human, bot, prompt_type_to_model_name, inv_prompt_type_to_model_lower | |
from stopping import CallbackToGenerator, Stream, StoppingCriteriaSub | |
is_hf = bool(os.getenv("HUGGINGFACE_SPACES")) | |
is_gpth2oai = bool(os.getenv("GPT_H2O_AI")) | |
is_public = is_hf or is_gpth2oai # multi-user case with fixed model and disclaimer | |
is_low_mem = is_hf # assumes run on 24GB consumer GPU | |
admin_pass = os.getenv("ADMIN_PASS") | |
def main( | |
load_8bit: bool = False, | |
load_half: bool = True, | |
infer_devices: bool = True, | |
base_model: str = '', | |
tokenizer_base_model: str = '', | |
lora_weights: str = "", | |
force_1_gpu: bool = True, | |
prompt_type: Union[int, str] = None, | |
# input to generation | |
temperature: float = None, | |
top_p: float = None, | |
top_k: int = None, | |
num_beams: int = None, | |
repetition_penalty: float = None, | |
num_return_sequences: int = None, | |
do_sample: bool = None, | |
max_new_tokens: int = None, | |
min_new_tokens: int = None, | |
early_stopping: Union[bool, str] = None, | |
max_time: float = None, | |
llama_type: bool = None, | |
debug: bool = False, | |
save_dir: str = None, | |
share: bool = True, | |
local_files_only: bool = False, | |
resume_download: bool = True, | |
use_auth_token: Union[str, bool] = False, # True requires CLI did huggingface-cli login before running | |
src_lang: str = "English", | |
tgt_lang: str = "Russian", | |
gradio: bool = True, | |
gradio_avoid_processing_markdown: bool = False, | |
chat: bool = True, | |
chat_history: int = 4096, # character length of chat context/history | |
stream_output: bool = True, | |
show_examples: bool = None, | |
verbose: bool = False, | |
h2ocolors: bool = True, | |
height: int = 400, | |
show_lora: bool = True, | |
# set to True to load --base_model after client logs in, | |
# to be able to free GPU memory when model is swapped | |
login_mode_if_model0: bool = False, | |
sanitize_user_prompt: bool = True, | |
sanitize_bot_response: bool = True, | |
extra_model_options: typing.List[str] = [], | |
extra_lora_options: typing.List[str] = [], | |
score_model: str = 'OpenAssistant/reward-model-deberta-v3-large-v2', | |
auto_score: bool = True, | |
eval_sharegpt_prompts_only: int = 0, | |
eval_sharegpt_prompts_only_seed: int = 1234, | |
eval_sharegpt_as_output: bool = False, | |
): | |
# allow set token directly | |
use_auth_token = os.environ.get("HUGGINGFACE_API_TOKEN", use_auth_token) | |
if is_public: | |
temperature = 0.4 | |
top_p = 0.85 | |
top_k = 70 | |
do_sample = True | |
if is_low_mem: | |
base_model = 'h2oai/h2ogpt-oasst1-512-12b' | |
load_8bit = True | |
else: | |
base_model = 'h2oai/h2ogpt-oasst1-512-20b' | |
if is_low_mem: | |
load_8bit = True | |
if is_hf: | |
# must override share if in spaces | |
share = False | |
save_dir = os.getenv('SAVE_DIR', save_dir) | |
# get defaults | |
model_lower = base_model.lower() | |
if not gradio: | |
# force, else not single response like want to look at | |
stream_output = False | |
# else prompt removal can mess up output | |
chat = False | |
placeholder_instruction, placeholder_input, \ | |
stream_output, show_examples, \ | |
prompt_type, temperature, top_p, top_k, num_beams, \ | |
max_new_tokens, min_new_tokens, early_stopping, max_time, \ | |
repetition_penalty, num_return_sequences, \ | |
do_sample, \ | |
src_lang, tgt_lang, \ | |
examples, \ | |
task_info = \ | |
get_generate_params(model_lower, chat, | |
stream_output, show_examples, | |
prompt_type, temperature, top_p, top_k, num_beams, | |
max_new_tokens, min_new_tokens, early_stopping, max_time, | |
repetition_penalty, num_return_sequences, | |
do_sample, | |
) | |
if not gradio: | |
if eval_sharegpt_prompts_only > 0: | |
# override default examples with shareGPT ones for human-level eval purposes only | |
filename = 'ShareGPT_V3_unfiltered_cleaned_split_no_imsorry.json' | |
if not os.path.isfile(filename): | |
os.system('wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/%s' % filename) | |
import json | |
data = json.load(open(filename, 'rt')) | |
# focus on data that starts with human, else likely chopped from other data | |
turn_start = 0 # odd in general | |
data = [x for x in data if len(x['conversations']) > turn_start + 1 and | |
x['conversations'][turn_start]['from'] == 'human' and | |
x['conversations'][turn_start + 1]['from'] == 'gpt'] | |
np.random.seed(eval_sharegpt_prompts_only_seed) | |
example1 = examples[-1] # pick reference example | |
examples = [] | |
responses = [] | |
for i in list(np.random.randint(0, len(data), size=eval_sharegpt_prompts_only)): | |
assert data[i]['conversations'][turn_start]['from'] == 'human' | |
instruction = data[i]['conversations'][turn_start]['value'] | |
assert data[i]['conversations'][turn_start + 1]['from'] == 'gpt' | |
output = data[i]['conversations'][turn_start + 1]['value'] | |
examplenew = example1.copy() | |
examplenew[0] = instruction | |
examplenew[1] = '' # no input | |
examplenew[2] = '' # no context | |
examples.append(examplenew) | |
responses.append(output) | |
with torch.device("cuda"): | |
# ensure was set right above before examples generated | |
assert not stream_output, "stream_output=True does not make sense with example loop" | |
import time | |
from functools import partial | |
# get score model | |
smodel, stokenizer, sdevice = get_score_model(**locals()) | |
if not eval_sharegpt_as_output: | |
model, tokenizer, device = get_model(**locals()) | |
model_state = [model, tokenizer, device, base_model] | |
fun = partial(evaluate, model_state, debug=debug, chat=chat, save_dir=save_dir) | |
else: | |
assert eval_sharegpt_prompts_only > 0 | |
def get_response(*args, exi=0): | |
# assumes same ordering of examples and responses | |
yield responses[exi] | |
fun = get_response | |
t0 = time.time() | |
score_dump = [] | |
num_examples = len(examples) | |
import matplotlib.pyplot as plt | |
for exi, ex in enumerate(examples): | |
clear_torch_cache() | |
print("") | |
print("START" + "=" * 100) | |
print("Question: %s %s" % (ex[0], ('input=%s' % ex[1] if ex[1] else ''))) | |
print("-" * 105) | |
# fun yields as generator, so have to iterate over it | |
# Also means likely do NOT want --stream_output=True, else would show all generations | |
for res in fun(*tuple(ex), exi=exi): | |
print(res) | |
if smodel: | |
score_with_prompt = False | |
if score_with_prompt: | |
data_point = dict(instruction=ex[0], input=ex[1]) | |
prompter = Prompter(prompt_type, debug=debug, chat=chat, stream_output=stream_output) | |
prompt = prompter.generate_prompt(data_point) | |
else: | |
# just raw input and output | |
assert ex[1] in [None, ''] # should be no iinput | |
assert ex[2] in [None, ''] # should be no context | |
prompt = ex[0] | |
cutoff_len = 768 if is_low_mem else 2048 | |
inputs = stokenizer(prompt, res, | |
return_tensors="pt", | |
truncation=True, | |
max_length=cutoff_len) | |
try: | |
score = torch.sigmoid(smodel(**inputs).logits[0]).cpu().detach().numpy()[0] | |
except torch.cuda.OutOfMemoryError as e: | |
print("GPU OOM: question: %s answer: %s exception: %s" % (prompt, res, str(e)), flush=True) | |
traceback.print_exc() | |
score = 0.0 | |
clear_torch_cache() | |
except RuntimeError as e: | |
if 'Expected all tensors to be on the same device' in str(e) or \ | |
'expected scalar type Half but found Float' in str(e) or \ | |
'probability tensor contains either' in str(e): | |
print("GPU error: question: %s answer: %s exception: %s" % (prompt, res, str(e)), | |
flush=True) | |
traceback.print_exc() | |
score = 0.0 | |
clear_torch_cache() | |
else: | |
raise | |
print("SCORE %s: %s" % (exi, score), flush=True) | |
score_dump.append(ex + [prompt, res, score]) | |
# dump every score in case abort | |
scoring_path = 'scoring' | |
os.makedirs(scoring_path, exist_ok=True) | |
if eval_sharegpt_as_output: | |
used_base_model = 'gpt35' | |
used_lora_weights = '' | |
else: | |
used_base_model = str(base_model.split('/')[-1]) | |
used_lora_weights = str(lora_weights.split('/')[-1]) | |
df_scores = pd.DataFrame(score_dump, columns=eval_func_param_names + ['prompt', 'response', 'score']) | |
filename = "df_scores_%s_%s_%s_%s_%s_%s.parquet" % (num_examples, eval_sharegpt_prompts_only, | |
eval_sharegpt_prompts_only_seed, | |
eval_sharegpt_as_output, | |
used_base_model, | |
used_lora_weights) | |
filename = os.path.join(scoring_path, filename) | |
df_scores.to_parquet(filename, index=False) | |
# plot histogram so far | |
plt.figure(figsize=(10, 10)) | |
plt.hist(df_scores['score'], bins=20) | |
score_avg = np.mean(df_scores['score']) | |
score_median = np.median(df_scores['score']) | |
plt.title("Score avg: %s median: %s" % (score_avg, score_median)) | |
plt.savefig(filename.replace('.parquet', '.png')) | |
plt.close() | |
print("END" + "=" * 102) | |
print("") | |
t2 = time.time() | |
print("Time taken so far: %.4f about %.4g per example" % (t2 - t0, (t2 - t0) / (1 + exi))) | |
t1 = time.time() | |
print("Total time taken: %.4f about %.4g per example" % (t1 - t0, (t1 - t0) / num_examples)) | |
return | |
if gradio: | |
go_gradio(**locals()) | |
def get_device(): | |
if torch.cuda.is_available(): | |
device = "cuda" | |
else: | |
raise RuntimeError("only cuda supported") | |
return device | |
def get_non_lora_model(base_model, model_loader, load_half, model_kwargs, reward_type, force_1_gpu=True, use_auth_token=False): | |
""" | |
Ensure model gets on correct device | |
:param base_model: | |
:param model_loader: | |
:param load_half: | |
:param model_kwargs: | |
:param reward_type: | |
:return: | |
""" | |
with init_empty_weights(): | |
from transformers import AutoConfig | |
config = AutoConfig.from_pretrained(base_model, use_auth_token=use_auth_token) | |
model = AutoModel.from_config( | |
config, | |
) | |
# NOTE: Can specify max_memory={0: max_mem, 1: max_mem}, to shard model | |
# NOTE: Some models require avoiding sharding some layers, | |
# then would pass no_split_module_classes and give list of those layers. | |
device_map = infer_auto_device_map( | |
model, | |
dtype=torch.float16 if load_half else torch.float32, | |
) | |
if hasattr(model, 'model'): | |
device_map_model = infer_auto_device_map( | |
model.model, | |
dtype=torch.float16 if load_half else torch.float32, | |
) | |
device_map.update(device_map_model) | |
print('device_map: %s' % device_map, flush=True) | |
if force_1_gpu: | |
# FIXME: If really distributes model, tend to get things like: ValueError: gpt_neox.embed_in.weight doesn't have any device set. | |
# So avoid for now, just put on first GPU, unless score_model, put on last | |
n_gpus = torch.cuda.device_count() | |
if reward_type: | |
device_map = {'': n_gpus - 1} | |
else: | |
device_map = {'': 0} | |
load_in_8bit = model_kwargs.get('load_in_8bit', False) | |
model_kwargs['device_map'] = device_map | |
if load_in_8bit or not load_half: | |
model = model_loader.from_pretrained( | |
base_model, | |
**model_kwargs, | |
) | |
else: | |
model = model_loader.from_pretrained( | |
base_model, | |
**model_kwargs, | |
).half() | |
return model | |
def get_model( | |
load_8bit: bool = False, | |
load_half: bool = True, | |
infer_devices: bool = True, | |
base_model: str = '', | |
tokenizer_base_model: str = '', | |
lora_weights: str = "", | |
force_1_gpu: bool = False, | |
llama_type: bool = None, | |
reward_type: bool = None, | |
local_files_only: bool = False, | |
resume_download: bool = True, | |
use_auth_token: Union[str, bool] = False, | |
compile: bool = True, | |
**kwargs, | |
): | |
""" | |
:param load_8bit: load model in 8-bit, not supported by all models | |
:param load_half: load model in 16-bit | |
:param infer_devices: Use torch infer of optimal placement of layers on devices (for non-lora case) | |
For non-LORA case, False will spread shards across multiple GPUs, but this can lead to cuda:x cuda:y mismatches | |
So it is not the default | |
:param base_model: name/path of base model | |
:param tokenizer_base_model: name/path of tokenizer | |
:param lora_weights: name/path | |
:param force_1_gpu: | |
:param llama_type: whether LLaMa type model | |
:param reward_type: reward type model for sequence classification | |
:param local_files_only: use local files instead of from HF | |
:param resume_download: resume downloads from HF | |
:param use_auth_token: assumes user did on CLI `huggingface-cli login` to access private repo | |
:parm compile: whether to compile torch model | |
:param kwargs: | |
:return: | |
""" | |
print("Get %s model" % base_model, flush=True) | |
if lora_weights is not None and lora_weights.strip(): | |
print("Get %s lora weights" % lora_weights, flush=True) | |
device = get_device() | |
if 'gpt2' in base_model.lower(): | |
# RuntimeError: where expected condition to be a boolean tensor, but got a tensor with dtype Half | |
load_8bit = False | |
assert base_model.strip(), ( | |
"Please choose a base model with --base_model (CLI) or in Models Tab (gradio)" | |
) | |
llama_type = llama_type or "llama" in base_model | |
model_loader, tokenizer_loader = get_loaders(llama_type=llama_type, model_name=base_model, reward_type=reward_type) | |
if not tokenizer_base_model: | |
tokenizer_base_model = base_model | |
if tokenizer_loader is not None and not isinstance(tokenizer_loader, str): | |
tokenizer = tokenizer_loader.from_pretrained(tokenizer_base_model, | |
local_files_only=local_files_only, | |
resume_download=resume_download, | |
use_auth_token=use_auth_token, | |
) | |
else: | |
tokenizer = tokenizer_loader | |
if isinstance(tokenizer, str): | |
# already a pipeline, tokenizer_loader is string for task | |
model = model_loader(tokenizer, | |
model=base_model, | |
device=0 if device == "cuda" else -1, | |
torch_dtype=torch.float16) | |
else: | |
assert device == "cuda", "Unsupported device %s" % device | |
model_kwargs = dict(local_files_only=local_files_only, | |
torch_dtype=torch.float16, | |
resume_download=resume_download, | |
use_auth_token=use_auth_token) | |
if 'mbart-' not in base_model.lower(): | |
model_kwargs.update(dict(load_in_8bit=load_8bit, | |
device_map={"": 0} if load_8bit else "auto", | |
)) | |
if 'OpenAssistant/reward-model'.lower() in base_model.lower(): | |
# could put on other GPUs | |
model_kwargs['device_map'] = {"": 0} | |
model_kwargs.pop('torch_dtype', None) | |
if not lora_weights: | |
with torch.device("cuda"): | |
if infer_devices: | |
model = get_non_lora_model(base_model, model_loader, load_half, model_kwargs, reward_type, | |
force_1_gpu=force_1_gpu, use_auth_token=use_auth_token) | |
else: | |
if load_half and not load_8bit: | |
model = model_loader.from_pretrained( | |
base_model, | |
**model_kwargs).half() | |
else: | |
model = model_loader.from_pretrained( | |
base_model, | |
**model_kwargs) | |
elif load_8bit: | |
model = model_loader.from_pretrained( | |
base_model, | |
**model_kwargs | |
) | |
model = PeftModel.from_pretrained( | |
model, | |
lora_weights, | |
torch_dtype=torch.float16, | |
local_files_only=local_files_only, | |
resume_download=resume_download, | |
use_auth_token=use_auth_token, | |
device_map={"": 0}, # seems to be required | |
) | |
else: | |
with torch.device("cuda"): | |
model = model_loader.from_pretrained( | |
base_model, | |
**model_kwargs | |
) | |
model = PeftModel.from_pretrained( | |
model, | |
lora_weights, | |
torch_dtype=torch.float16, | |
local_files_only=local_files_only, | |
resume_download=resume_download, | |
use_auth_token=use_auth_token, | |
device_map="auto", | |
) | |
if load_half: | |
model.half() | |
# unwind broken decapoda-research config | |
if llama_type: | |
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk | |
model.config.bos_token_id = 1 | |
model.config.eos_token_id = 2 | |
if 'gpt2' in base_model.lower(): | |
# add special tokens that otherwise all share the same id | |
tokenizer.add_special_tokens({'bos_token': '<bos>', | |
'eos_token': '<eos>', | |
'pad_token': '<pad>'}) | |
if not isinstance(tokenizer, str): | |
model.eval() | |
if torch.__version__ >= "2" and sys.platform != "win32" and compile: | |
model = torch.compile(model) | |
return model, tokenizer, device | |
def get_score_model(**kwargs): | |
# score model | |
if kwargs.get('score_model') is not None and kwargs.get('score_model').strip(): | |
score_all_kwargs = kwargs.copy() | |
score_all_kwargs['load_8bit'] = False | |
score_all_kwargs['load_half'] = False | |
score_all_kwargs['base_model'] = kwargs.get('score_model').strip() | |
score_all_kwargs['tokenizer_base_model'] = '' | |
score_all_kwargs['lora_weights'] = '' | |
score_all_kwargs['llama_type'] = False | |
score_all_kwargs['compile'] = False | |
smodel, stokenizer, sdevice = get_model(**score_all_kwargs) | |
else: | |
smodel, stokenizer, sdevice = None, None, None | |
return smodel, stokenizer, sdevice | |
def go_gradio(**kwargs): | |
# get default model | |
all_kwargs = kwargs.copy() | |
all_kwargs.update(locals()) | |
if kwargs.get('base_model') and not kwargs['login_mode_if_model0']: | |
model0, tokenizer0, device = get_model(**all_kwargs) | |
else: | |
# if empty model, then don't load anything, just get gradio up | |
model0, tokenizer0, device = None, None, None | |
model_state0 = [model0, tokenizer0, device, kwargs['base_model']] | |
# get score model | |
smodel, stokenizer, sdevice = get_score_model(**all_kwargs) | |
if 'mbart-' in kwargs['model_lower']: | |
instruction_label = "Text to translate" | |
else: | |
instruction_label = "Instruction" | |
if kwargs['chat']: | |
instruction_label = "You (Shift-Enter or push Submit to send message)" | |
title = 'h2oGPT' | |
if kwargs['verbose']: | |
description = f"""Model {kwargs['base_model']} Instruct dataset. | |
For more information, visit [the project's website](https://github.com/h2oai/h2ogpt). | |
Command: {str(' '.join(sys.argv))} | |
Hash: {get_githash()} | |
""" | |
else: | |
description = "For more information, visit [the project's website](https://github.com/h2oai/h2ogpt).<br>" | |
if is_public: | |
description += """<p><b> DISCLAIMERS: </b><ul><i><li>The data used to train this model include The Pile and other sources. These may contain objectionable content, so the model may reproduce that material. Use application and responses at own risk.</i></li>""" | |
if kwargs['load_8bit']: | |
description += """<i><li> Model is loaded in 8-bit, model loading-unloading is disabled, and other limitations exist in order to fit on GPUs with lower amounts of VRAM, so UX can be worse than non-hosted version.</i></li>""" | |
description += """<i><li>Conversations may be used to improve h2oGPT. Do not share sensitive information.</i></li>""" | |
description += """<i><li>By using h2oGPT, you accept our [Terms of Service](https://github.com/h2oai/h2ogpt/blob/main/tos.md).</i></li></ul></p>""" | |
if kwargs['verbose']: | |
task_info_md = f""" | |
### Task: {kwargs['task_info']}""" | |
else: | |
task_info_md = '' | |
css_code = """footer {visibility: hidden;} | |
body{background:linear-gradient(#f5f5f5,#e5e5e5);} | |
body.dark{background:linear-gradient(#0d0d0d,#333333);}""" | |
from gradio.themes.utils import Color, colors, fonts, sizes | |
if kwargs['h2ocolors']: | |
h2o_yellow = Color( | |
name="yellow", | |
c50="#fffef2", | |
c100="#fff9e6", | |
c200="#ffecb3", | |
c300="#ffe28c", | |
c400="#ffd659", | |
c500="#fec925", | |
c600="#e6ac00", | |
c700="#bf8f00", | |
c800="#a67c00", | |
c900="#664d00", | |
c950="#403000", | |
) | |
h2o_gray = Color( | |
name="gray", | |
c50="#f2f2f2", | |
c100="#e5e5e5", | |
c200="#cccccc", | |
c300="#b2b2b2", | |
c400="#999999", | |
c500="#7f7f7f", | |
c600="#666666", | |
c700="#4c4c4c", | |
c800="#333333", | |
c900="#191919", | |
c950="#0d0d0d", | |
) | |
colors_dict = dict(primary_hue=h2o_yellow, | |
secondary_hue=h2o_yellow, | |
neutral_hue=h2o_gray, | |
spacing_size=sizes.spacing_md, | |
radius_size=sizes.radius_md, | |
text_size=sizes.text_md, | |
) | |
else: | |
colors_dict = dict(primary_hue=colors.indigo, | |
secondary_hue=colors.indigo, | |
neutral_hue=colors.gray, | |
spacing_size=sizes.spacing_md, | |
radius_size=sizes.radius_md, | |
text_size=sizes.text_md, | |
) | |
import gradio as gr | |
if kwargs['gradio_avoid_processing_markdown']: | |
from gradio_client import utils as client_utils | |
from gradio.components import Chatbot | |
# gradio has issue with taking too long to process input/output for markdown etc. | |
# Avoid for now, allow raw html to render, good enough for chatbot. | |
def _postprocess_chat_messages(self, chat_message: str): | |
if chat_message is None: | |
return None | |
elif isinstance(chat_message, (tuple, list)): | |
filepath = chat_message[0] | |
mime_type = client_utils.get_mimetype(filepath) | |
filepath = self.make_temp_copy_if_needed(filepath) | |
return { | |
"name": filepath, | |
"mime_type": mime_type, | |
"alt_text": chat_message[1] if len(chat_message) > 1 else None, | |
"data": None, # These last two fields are filled in by the frontend | |
"is_file": True, | |
} | |
elif isinstance(chat_message, str): | |
return chat_message | |
else: | |
raise ValueError(f"Invalid message for Chatbot component: {chat_message}") | |
Chatbot._postprocess_chat_messages = _postprocess_chat_messages | |
demo = gr.Blocks(theme=gr.themes.Soft(**colors_dict), css=css_code, title="h2oGPT", analytics_enabled=False) | |
callback = gr.CSVLogger() | |
# css_code = 'body{background-image:url("https://h2o.ai/content/experience-fragments/h2o/us/en/site/header/master/_jcr_content/root/container/header_copy/logo.coreimg.svg/1678976605175/h2o-logo.svg");}' | |
# demo = gr.Blocks(theme='gstaff/xkcd', css=css_code) | |
model_options = flatten_list(list(prompt_type_to_model_name.values())) + kwargs['extra_model_options'] | |
if kwargs['base_model'].strip() not in model_options: | |
lora_options = [kwargs['base_model'].strip()] + model_options | |
lora_options = kwargs['extra_lora_options'] | |
if kwargs['lora_weights'].strip() not in lora_options: | |
lora_options = [kwargs['lora_weights'].strip()] + lora_options | |
# always add in no lora case | |
# add fake space so doesn't go away in gradio dropdown | |
lora_options = [' '] + kwargs['extra_lora_options'] | |
output_label0 = f'h2oGPT [Model: {kwargs.get("base_model")}]' if kwargs.get('base_model') else 'h2oGPT [ !!! Please Load Model in Models Tab !!! ]' | |
with demo: | |
# avoid actual model/tokenizer here or anything that would be bad to deepcopy | |
# https://github.com/gradio-app/gradio/issues/3558 | |
model_state = gr.State(['model', 'tokenizer', device, kwargs['base_model']]) | |
model_options_state = gr.State([model_options]) | |
lora_options_state = gr.State([lora_options]) | |
gr.Markdown( | |
f""" | |
<h1 align="center"> {title}</h1> | |
{description} | |
{task_info_md} | |
""") | |
if is_hf: | |
gr.HTML('''<center><a href="https://huggingface.co/spaces/h2oai/h2ogpt-chatbot?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate this Space to skip the queue and run in a private space</center>''') | |
# go button visible if | |
base_wanted = bool(kwargs['base_model']) and kwargs['login_mode_if_model0'] | |
go_btn = gr.Button(value="ENTER", visible=base_wanted, variant="primary") | |
normal_block = gr.Row(visible=not base_wanted) | |
with normal_block: | |
with gr.Tabs(): | |
with gr.Row(): | |
if not kwargs['chat']: | |
with gr.Column(): | |
instruction = gr.Textbox( | |
lines=4, label=instruction_label, | |
placeholder=kwargs['placeholder_instruction'], | |
) | |
iinput = gr.Textbox(lines=4, label="Input", | |
placeholder=kwargs['placeholder_input']) | |
flag_btn = gr.Button("Flag") | |
if kwargs['score_model']: | |
if not kwargs['auto_score']: | |
with gr.Column(): | |
score_btn = gr.Button("Score last prompt & response") | |
score_text = gr.Textbox("Response Score: NA", show_label=False) | |
else: | |
score_text = gr.Textbox("Response Score: NA", show_label=False) | |
with gr.Column(): | |
if kwargs['chat']: | |
text_output = gr.Chatbot(label=output_label0).style(height=kwargs['height'] or 400) | |
with gr.Row(): | |
with gr.Column(scale=50): | |
instruction = gr.Textbox( | |
lines=4, label=instruction_label, | |
placeholder=kwargs['placeholder_instruction'], | |
) | |
with gr.Row(): # .style(equal_height=False, equal_width=False): | |
submit = gr.Button(value='Submit').style(full_width=False, size='sm') | |
stop_btn = gr.Button(value="Stop").style(full_width=False, size='sm') | |
with gr.Row(): | |
clear = gr.Button("New Conversation") | |
flag_btn = gr.Button("Flag") | |
if kwargs['score_model']: | |
if not kwargs['auto_score']: | |
with gr.Column(): | |
score_btn = gr.Button("Score last prompt & response").style(full_width=False, size='sm') | |
score_text = gr.Textbox("Response Score: NA", show_label=False) | |
else: | |
score_text = gr.Textbox("Response Score: NA", show_label=False) | |
retry = gr.Button("Regenerate") | |
undo = gr.Button("Undo") | |
else: | |
text_output = gr.Textbox(lines=5, label=output_label0) | |
with gr.TabItem("Input/Output"): | |
with gr.Row(): | |
if 'mbart-' in kwargs['model_lower']: | |
src_lang = gr.Dropdown(list(languages_covered().keys()), | |
value=kwargs['src_lang'], | |
label="Input Language") | |
tgt_lang = gr.Dropdown(list(languages_covered().keys()), | |
value=kwargs['tgt_lang'], | |
label="Output Language") | |
with gr.TabItem("Expert"): | |
with gr.Row(): | |
with gr.Column(): | |
stream_output = gr.components.Checkbox(label="Stream output", | |
value=kwargs['stream_output']) | |
prompt_type = gr.Dropdown(prompt_types_strings, | |
value=kwargs['prompt_type'], label="Prompt Type", | |
visible=not is_public) | |
temperature = gr.Slider(minimum=0, maximum=3, | |
value=kwargs['temperature'], | |
label="Temperature", | |
info="Lower is deterministic (but may lead to repeats), Higher more creative (but may lead to hallucinations)") | |
top_p = gr.Slider(minimum=0, maximum=1, | |
value=kwargs['top_p'], label="Top p", | |
info="Cumulative probability of tokens to sample from") | |
top_k = gr.Slider( | |
minimum=0, maximum=100, step=1, | |
value=kwargs['top_k'], label="Top k", | |
info='Num. tokens to sample from' | |
) | |
max_beams = 8 if not is_low_mem else 2 | |
num_beams = gr.Slider(minimum=1, maximum=max_beams, step=1, | |
value=min(max_beams, kwargs['num_beams']), label="Beams", | |
info="Number of searches for optimal overall probability. " | |
"Uses more GPU memory/compute") | |
max_max_new_tokens = 2048 if not is_low_mem else kwargs['max_new_tokens'] | |
max_new_tokens = gr.Slider( | |
minimum=1, maximum=max_max_new_tokens, step=1, | |
value=min(max_max_new_tokens, kwargs['max_new_tokens']), label="Max output length", | |
) | |
min_new_tokens = gr.Slider( | |
minimum=0, maximum=max_max_new_tokens, step=1, | |
value=min(max_max_new_tokens, kwargs['min_new_tokens']), label="Min output length", | |
) | |
early_stopping = gr.Checkbox(label="EarlyStopping", info="Stop early in beam search", | |
value=kwargs['early_stopping']) | |
max_max_time = 60 * 5 if not is_low_mem else 60 | |
max_time = gr.Slider(minimum=0, maximum=max_max_time, step=1, | |
value=min(max_max_time, kwargs['max_time']), label="Max. time", | |
info="Max. time to search optimal output.") | |
repetition_penalty = gr.Slider(minimum=0.01, maximum=3.0, | |
value=kwargs['repetition_penalty'], | |
label="Repetition Penalty") | |
num_return_sequences = gr.Slider(minimum=1, maximum=10, step=1, | |
value=kwargs['num_return_sequences'], | |
label="Number Returns", info="Must be <= num_beams", | |
visible=not is_public) | |
do_sample = gr.Checkbox(label="Sample", info="Sample, for diverse output(s)", | |
value=kwargs['do_sample']) | |
if kwargs['chat']: | |
iinput = gr.Textbox(lines=4, label="Input", | |
placeholder=kwargs['placeholder_input'], | |
visible=not is_public) | |
# nominally empty for chat mode | |
context = gr.Textbox(lines=1, label="Context", | |
info="Ignored in chat mode.", | |
visible=not is_public) | |
with gr.TabItem("Models"): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(scale=1): | |
with gr.Column(scale=50): | |
model_choice = gr.Dropdown(model_options_state.value[0], label="Choose Model", value=kwargs['base_model']) | |
lora_choice = gr.Dropdown(lora_options_state.value[0], label="Choose LORA", value=kwargs['lora_weights'], visible=kwargs['show_lora']) | |
with gr.Column(scale=1): | |
load_msg = "Load Model/LORA" if not is_public \ | |
else "LOAD DISABLED FOR HOSTED DEMO" | |
load_model_button = gr.Button(load_msg) | |
model_used = gr.Textbox(label="Current Model", value=kwargs['base_model']) | |
lora_used = gr.Textbox(label="Current LORA", value=kwargs['lora_weights'], visible=kwargs['show_lora']) | |
with gr.Row(scale=1): | |
with gr.Column(scale=50): | |
new_model = gr.Textbox(label="New Model HF name/path") | |
new_lora = gr.Textbox(label="New LORA HF name/path", visible=kwargs['show_lora']) | |
with gr.Column(scale=1): | |
add_model_button = gr.Button("Add new model name") | |
add_lora_button = gr.Button("Add new LORA name", visible=kwargs['show_lora']) | |
with gr.TabItem("System"): | |
system_row = gr.Row(visible=not is_public) | |
admin_pass_textbox = gr.Textbox(label="Admin Password", type='password', visible=is_public) | |
admin_btn = gr.Button(value="admin", visible=is_public) | |
with system_row: | |
with gr.Column(): | |
system_text = gr.Textbox(label='System Info') | |
system_btn = gr.Button(value='Get System Info') | |
zip_btn = gr.Button("Zip") | |
file_output = gr.File() | |
# Get flagged data | |
zip_data1 = functools.partial(zip_data, root_dirs=['flagged_data_points', kwargs['save_dir']]) | |
zip_btn.click(zip_data1, inputs=None, outputs=file_output) | |
def check_admin_pass(x): | |
return gr.update(visible=x == admin_pass) | |
admin_btn.click(check_admin_pass, inputs=admin_pass_textbox, outputs=system_row) | |
# Get inputs to evaluate() | |
inputs_list = get_inputs_list(locals(), kwargs['model_lower']) | |
from functools import partial | |
all_kwargs = kwargs.copy() | |
all_kwargs.update(locals()) | |
kwargs_evaluate = {k: v for k, v in all_kwargs.items() if k in inputs_kwargs_list} | |
fun = partial(evaluate, | |
**kwargs_evaluate) | |
dark_mode_btn = gr.Button("Dark Mode", variant="primary").style( | |
size="sm", | |
) | |
dark_mode_btn.click( | |
None, | |
None, | |
None, | |
_js="""() => { | |
if (document.querySelectorAll('.dark').length) { | |
document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark')); | |
} else { | |
document.querySelector('body').classList.add('dark'); | |
} | |
}""", | |
api_name="dark", | |
) | |
if not kwargs['chat']: | |
submit = gr.Button("Submit") | |
submit_event = submit.click(fun, inputs=[model_state] + inputs_list, outputs=text_output, api_name='submit') | |
# examples after submit or any other buttons for chat or no chat | |
if kwargs['examples'] is not None and kwargs['show_examples']: | |
gr.Examples(examples=kwargs['examples'], inputs=inputs_list) | |
# Score | |
def score_last_response(*args): | |
""" Similar to user() """ | |
args_list = list(args) | |
history = args_list[-1] | |
if history is None: | |
print("Bad history in scoring last response, fix for now", flush=True) | |
history = [] | |
if smodel is not None and \ | |
stokenizer is not None and \ | |
sdevice is not None and \ | |
history is not None and len(history) > 0 and \ | |
history[-1] is not None and \ | |
len(history[-1]) >= 2: | |
os.environ['TOKENIZERS_PARALLELISM'] = 'false' | |
max_length_tokenize = 512 if is_low_mem else 2048 | |
cutoff_len = max_length_tokenize*4 # restrict deberta related to max for LLM | |
question = history[-1][0] | |
question = question[-cutoff_len:] | |
answer = history[-1][1] | |
answer = answer[-cutoff_len:] | |
inputs = stokenizer(question, answer, | |
return_tensors="pt", | |
truncation=True, | |
max_length=max_length_tokenize).to(smodel.device) | |
try: | |
score = torch.sigmoid(smodel(**inputs).logits[0]).cpu().detach().numpy()[0] | |
except torch.cuda.OutOfMemoryError as e: | |
print("GPU OOM: question: %s answer: %s exception: %s" % (question, answer, str(e)), flush=True) | |
del inputs | |
traceback.print_exc() | |
clear_torch_cache() | |
return 'Response Score: GPU OOM' | |
except RuntimeError as e: | |
if 'Expected all tensors to be on the same device' in str(e) or \ | |
'expected scalar type Half but found Float' in str(e) or \ | |
'probability tensor contains either' in str(e): | |
print("GPU Error: question: %s answer: %s exception: %s" % (question, answer, str(e)), flush=True) | |
traceback.print_exc() | |
clear_torch_cache() | |
return 'Response Score: GPU Error' | |
else: | |
raise | |
os.environ['TOKENIZERS_PARALLELISM'] = 'true' | |
return 'Response Score: {:.1%}'.format(score) | |
else: | |
return 'Response Score: NA' | |
if kwargs['score_model']: | |
score_args = dict(fn=score_last_response, | |
inputs=inputs_list + [text_output], | |
outputs=[score_text], | |
) | |
if not kwargs['auto_score']: | |
score_event = score_btn.click(**score_args, queue=stream_output, api_name='score') | |
if kwargs['chat']: | |
def user(*args, undo=False, sanitize_user_prompt=True): | |
args_list = list(args) | |
user_message = args_list[0] | |
input1 = args_list[1] | |
context1 = args_list[2] | |
if input1 and not user_message.endswith(':'): | |
user_message1 = user_message + ":" + input1 | |
elif input1: | |
user_message1 = user_message + input1 | |
else: | |
user_message1 = user_message | |
if sanitize_user_prompt: | |
from better_profanity import profanity | |
user_message1 = profanity.censor(user_message1) | |
history = args_list[-1] | |
if undo and history: | |
history.pop() | |
args_list = args_list[:-1] | |
if history is None: | |
print("Bad history, fix for now", flush=True) | |
history = [] | |
if undo: | |
return "", history | |
else: | |
return "", history + [[user_message1, None]] | |
def bot(*args, retry=False): | |
args_list = list(args) | |
history = args_list[-1] | |
if retry and history: | |
history.pop() | |
if not history: | |
print("No history", flush=True) | |
return | |
instruction1 = history[-1][0] | |
context1 = '' | |
if kwargs['chat_history'] > 0: | |
prompt_type1 = args_list[prompt_type_arg_id] | |
context1 = '' | |
for histi in range(len(history) - 1): | |
data_point = dict(instruction=history[histi][0], input='', output=history[histi][1]) | |
context1 += generate_prompt(data_point, prompt_type1, kwargs['chat'], reduced=True)[0].replace( | |
'<br>', '\n') | |
if not context1.endswith('\n'): | |
context1 += '\n' | |
if context1 and not context1.endswith('\n'): | |
context1 += '\n' # ensure if terminates abruptly, then human continues on next line | |
args_list[0] = instruction1 | |
# only include desired chat history | |
args_list[2] = context1[-kwargs['chat_history']:] | |
model_state1 = args_list[-2] | |
args_list = args_list[:-2] | |
fun1 = partial(evaluate, | |
model_state1, | |
**kwargs_evaluate) | |
try: | |
for output in fun1(*tuple(args_list)): | |
bot_message = output | |
history[-1][1] = bot_message | |
yield history | |
except StopIteration: | |
yield history | |
except RuntimeError as e: | |
if "generator raised StopIteration" in str(e): | |
# assume last entry was bad, undo | |
history.pop() | |
yield history | |
raise | |
except Exception as e: | |
# put error into user input | |
history[-1][0] = "Exception: %s" % str(e) | |
yield history | |
raise | |
return | |
user_args = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt']), | |
inputs=inputs_list + [text_output], | |
outputs=[instruction, text_output], | |
) | |
bot_args = dict(fn=bot, | |
inputs=inputs_list + [model_state] + [text_output], | |
outputs=[text_output], | |
) | |
retry_bot_args = dict(fn=functools.partial(bot, retry=True), | |
inputs=inputs_list + [model_state] + [text_output], | |
outputs=[text_output], | |
) | |
undo_user_args = dict(fn=functools.partial(user, undo=True), | |
inputs=inputs_list + [text_output], | |
outputs=[instruction, text_output], | |
) | |
if kwargs['auto_score']: | |
submit_event = instruction.submit(**user_args, queue=stream_output, api_name='instruction').then( | |
**bot_args, api_name='instruction_bot', | |
).then(**score_args, api_name='instruction_bot_score').then(clear_torch_cache) | |
submit_event2 = submit.click(**user_args, queue=stream_output, api_name='submit').then( | |
**bot_args, api_name='submit_bot', | |
).then(**score_args, api_name='submit_bot_score').then(clear_torch_cache) | |
submit_event3 = retry.click(**user_args, queue=stream_output, api_name='retry').then( | |
**retry_bot_args, api_name='retry_bot', | |
).then(**score_args, api_name='retry_bot_score').then(clear_torch_cache) | |
submit_event4 = undo.click(**undo_user_args, queue=stream_output, api_name='undo').then(**score_args, api_name='undo_score') | |
else: | |
submit_event = instruction.submit(**user_args, queue=stream_output, api_name='instruction').then( | |
**bot_args, api_name='instruction_bot', | |
).then(clear_torch_cache) | |
submit_event2 = submit.click(**user_args, queue=stream_output, api_name='submit').then( | |
**bot_args, api_name='submit_bot', | |
).then(clear_torch_cache) | |
submit_event3 = retry.click(**user_args, queue=stream_output, api_name='retry').then( | |
**retry_bot_args, api_name='retry_bot', | |
).then(clear_torch_cache) | |
submit_event4 = undo.click(**undo_user_args, queue=stream_output, api_name='undo') | |
clear.click(lambda: None, None, text_output, queue=False, api_name='clear') | |
def load_model(model_name, lora_weights, model_state_old, prompt_type_old): | |
# ensure old model removed from GPU memory | |
if kwargs['debug']: | |
print("Pre-switch pre-del GPU memory: %s" % torch.cuda.memory_allocated(), flush=True) | |
if isinstance(model_state_old[0], str) and model0 is not None: | |
# best can do, move model loaded at first to CPU | |
model0.cpu() | |
if model_state_old[0] is not None and not isinstance(model_state_old[0], str): | |
try: | |
model_state_old[0].cpu() | |
except Exception as e: | |
# sometimes hit NotImplementedError: Cannot copy out of meta tensor; no data! | |
print("Unable to put model on CPU: %s" % str(e), flush=True) | |
del model_state_old[0] | |
model_state_old[0] = None | |
if model_state_old[1] is not None and not isinstance(model_state_old[1], str): | |
del model_state_old[1] | |
model_state_old[1] = None | |
clear_torch_cache() | |
if kwargs['debug']: | |
print("Pre-switch post-del GPU memory: %s" % torch.cuda.memory_allocated(), flush=True) | |
all_kwargs['base_model'] = model_name.strip() | |
model_lower = model_name.strip().lower() | |
if model_lower in inv_prompt_type_to_model_lower: | |
prompt_type1 = inv_prompt_type_to_model_lower[model_lower] | |
else: | |
prompt_type1 = prompt_type_old | |
all_kwargs['lora_weights'] = lora_weights.strip() | |
model1, tokenizer1, device1 = get_model(**all_kwargs) | |
clear_torch_cache() | |
if kwargs['debug']: | |
print("Post-switch GPU memory: %s" % torch.cuda.memory_allocated(), flush=True) | |
return {model_state: [model1, tokenizer1, device1, model_name], | |
model_used: model_name, | |
lora_used: lora_weights, | |
prompt_type: prompt_type1} | |
def dropdown_prompt_type_list(x): | |
return gr.Dropdown.update(value=x) | |
def chatbot_list(x, model_used_in): | |
return gr.Textbox.update(label=f'h2oGPT [Model: {model_used_in}]') | |
load_model_args = dict(fn=load_model, | |
inputs=[model_choice, lora_choice, model_state, prompt_type], | |
outputs=[model_state, model_used, lora_used, prompt_type]) | |
prompt_update_args = dict(fn=dropdown_prompt_type_list, inputs=prompt_type, outputs=prompt_type) | |
chatbot_update_args = dict(fn=chatbot_list, inputs=[text_output, model_used], outputs=text_output) | |
if not is_public: | |
load_model_event = load_model_button.click(**load_model_args) \ | |
.then(**prompt_update_args) \ | |
.then(**chatbot_update_args) \ | |
.then(clear_torch_cache) | |
def dropdown_model_list(list0, x): | |
new_state = [list0[0] + [x]] | |
new_options = [*new_state[0]] | |
return gr.Dropdown.update(value=x, choices=new_options), '', new_state | |
add_model_event = add_model_button.click(fn=dropdown_model_list, | |
inputs=[model_options_state, new_model], | |
outputs=[model_choice, new_model, model_options_state]) | |
def dropdown_lora_list(list0, x): | |
new_state = [list0[0] + [x]] | |
new_options = [*new_state[0]] | |
return gr.Dropdown.update(value=x, choices=new_options), '', new_state | |
add_lora_event = add_lora_button.click(fn=dropdown_lora_list, | |
inputs=[lora_options_state, new_lora], | |
outputs=[lora_choice, new_lora, lora_options_state]) | |
go_btn.click(lambda: gr.update(visible=False), None, go_btn, api_name="go") \ | |
.then(lambda: gr.update(visible=True), None, normal_block) \ | |
.then(**load_model_args).then(**prompt_update_args) | |
# callback for logging flagged input/output | |
callback.setup(inputs_list + [text_output], "flagged_data_points") | |
flag_btn.click(lambda *args: callback.flag(args), inputs_list + [text_output], None, preprocess=False, | |
api_name='flag') | |
def get_system_info(): | |
return gr.Textbox.update(value=system_info_print()) | |
system_event = system_btn.click(get_system_info, outputs=system_text, api_name='system_info') | |
if kwargs['chat']: | |
# don't pass text_output, don't want to clear output, just stop it | |
# FIXME: have to click once to stop output and second time to stop GPUs going | |
stop_btn.click(lambda: None, None, None, cancels=[submit_event, submit_event2, submit_event3], | |
queue=False, api_name='stop').then(clear_torch_cache) | |
demo.queue(concurrency_count=1) | |
favicon_path = "h2o-logo.svg" | |
demo.launch(share=kwargs['share'], server_name="0.0.0.0", show_error=True, | |
favicon_path=favicon_path, prevent_thread_lock=True) # , enable_queue=True) | |
print("Started GUI", flush=True) | |
demo.block_thread() | |
input_args_list = ['model_state'] | |
inputs_kwargs_list = ['debug', 'chat', 'save_dir', 'hard_stop_list', 'sanitize_bot_response', 'model_state0'] | |
def get_inputs_list(inputs_dict, model_lower): | |
inputs_list_names = list(inspect.signature(evaluate).parameters) | |
inputs_list = [] | |
for k in inputs_list_names: | |
if k == 'kwargs': | |
continue | |
if k in input_args_list + inputs_kwargs_list: | |
# these are added via partial, not taken as input | |
continue | |
if 'mbart-' not in model_lower and k in ['src_lang', 'tgt_lang']: | |
continue | |
inputs_list.append(inputs_dict[k]) | |
return inputs_list | |
# index of prompt_type in evaluate function, after model_state | |
prompt_type_arg_id = 4 | |
eval_func_param_names = ['instruction', | |
'iinput', | |
'context', | |
'stream_output', | |
'prompt_type', | |
'temperature', | |
'top_p', | |
'top_k', | |
'num_beams', | |
'max_new_tokens', | |
'min_new_tokens', | |
'early_stopping', | |
'max_time', | |
'repetition_penalty', | |
'num_return_sequences', | |
'do_sample', | |
] | |
def evaluate( | |
model_state, | |
# START NOTE: Examples must have same order of parameters | |
instruction, | |
iinput, | |
context, | |
stream_output, | |
prompt_type, | |
temperature, | |
top_p, | |
top_k, | |
num_beams, | |
max_new_tokens, | |
min_new_tokens, | |
early_stopping, | |
max_time, | |
repetition_penalty, | |
num_return_sequences, | |
do_sample, | |
# END NOTE: Examples must have same order of parameters | |
src_lang=None, | |
tgt_lang=None, | |
debug=False, | |
save_dir=None, | |
chat=False, | |
hard_stop_list=None, | |
sanitize_bot_response=True, | |
model_state0=None, | |
**kwargs, | |
): | |
if debug: | |
locals_dict = locals().copy() | |
locals_dict.pop('model_state', None) | |
print(locals_dict) | |
no_model_msg = "Please choose a base model with --base_model (CLI) or in Models Tab (gradio).\nThen start New Conversation" | |
if model_state is not None and len(model_state) == 4 and not isinstance(model_state[0], str): | |
# try to free-up original model (i.e. list was passed as reference) | |
if model_state0 is not None and model_state0[0] is not None: | |
model_state0[0].cpu() | |
model_state0[0] = None | |
# try to free-up original tokenizer (i.e. list was passed as reference) | |
if model_state0 is not None and model_state0[1] is not None: | |
model_state0[1] = None | |
clear_torch_cache() | |
model, tokenizer, device, base_model = model_state | |
elif model_state0 is not None and len(model_state0) == 4 and model_state0[0] is not None: | |
assert isinstance(model_state[0], str) | |
model, tokenizer, device, base_model = model_state0 | |
else: | |
raise AssertionError(no_model_msg) | |
assert base_model.strip(), no_model_msg | |
assert model, "Model is missing" | |
assert tokenizer, "Tokenizer is missing" | |
data_point = dict(context=context, instruction=instruction, input=iinput) | |
prompter = Prompter(prompt_type, debug=debug, chat=chat, stream_output=stream_output) | |
prompt = prompter.generate_prompt(data_point) | |
if hard_stop_list is None: | |
# acts like undo on user entry and bot response | |
hard_stop_list = [] | |
if isinstance(tokenizer, str): | |
# pipeline | |
if tokenizer == "summarization": | |
key = 'summary_text' | |
else: | |
raise RuntimeError("No such task type %s" % tokenizer) | |
# NOTE: uses max_length only | |
yield model(prompt, max_length=max_new_tokens)[0][key] | |
if 'mbart-' in base_model.lower(): | |
assert src_lang is not None | |
tokenizer.src_lang = languages_covered()[src_lang] | |
if chat: | |
# override, ignore user change | |
num_return_sequences = 1 | |
if prompt_type in ['human_bot', 'instruct_vicuna', 'instruct_with_end']: | |
if prompt_type == 'human_bot': | |
# encounters = [prompt.count(human) + 1, prompt.count(bot) + 1] | |
# stopping only starts once output is beyond prompt | |
# 1 human is enough to trigger, but need 2 bots, because very first view back will be bot we added | |
stop_words = [human, bot, '\n' + human, '\n' + bot] | |
encounters = [1, 2] | |
elif prompt_type == 'instruct_vicuna': | |
# even below is not enough, generic strings and many ways to encode | |
stop_words = [ | |
'### Human:', | |
""" | |
### Human:""", | |
""" | |
### Human: | |
""", | |
'### Assistant:', | |
""" | |
### Assistant:""", | |
""" | |
### Assistant: | |
""", | |
] | |
encounters = [1, 2] | |
else: | |
# some instruct prompts have this as end, doesn't hurt to stop on it since not common otherwise | |
stop_words = ['### End'] | |
encounters = [1] | |
stop_words_ids = [ | |
tokenizer(stop_word, return_tensors='pt')['input_ids'].squeeze() for stop_word in stop_words] | |
# handle single token case | |
stop_words_ids = [x if len(x.shape) > 0 else torch.tensor([x]) for x in stop_words_ids] | |
stop_words_ids = [x for x in stop_words_ids if x.shape[0] > 0] | |
# avoid padding in front of tokens | |
if tokenizer.pad_token: | |
stop_words_ids = [x[1:] if x[0] == tokenizer.pad_token_id and len(x) > 1 else x for x in stop_words_ids] | |
# handle fake \n added | |
stop_words_ids = [x[1:] if y[0] == '\n' else x for x,y in zip(stop_words_ids, stop_words)] | |
# build stopper | |
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids, encounters=encounters)]) | |
else: | |
stopping_criteria = StoppingCriteriaList() | |
# help to avoid errors like: | |
# RuntimeError: The size of tensor a (2048) must match the size of tensor b (2049) at non-singleton dimension 3 | |
# RuntimeError: expected scalar type Half but found Float | |
# with - 256 | |
max_length_tokenize = 768 - 256 if is_low_mem else 2048 - 256 | |
cutoff_len = max_length_tokenize * 4 # if reaches limit, then can't generate new tokens | |
output_smallest = 30 * 4 | |
prompt = prompt[-cutoff_len - output_smallest:] | |
inputs = tokenizer(prompt, | |
return_tensors="pt", | |
truncation=True, | |
max_length=max_length_tokenize) | |
if debug and len(inputs["input_ids"]) > 0: | |
print('input_ids length', len(inputs["input_ids"][0]), flush=True) | |
input_ids = inputs["input_ids"].to(device) | |
generation_config = GenerationConfig( | |
temperature=float(temperature), | |
top_p=float(top_p), | |
top_k=top_k, | |
num_beams=num_beams, | |
do_sample=do_sample, | |
repetition_penalty=float(repetition_penalty), | |
num_return_sequences=num_return_sequences, | |
renormalize_logits=True, | |
remove_invalid_values=True, | |
**kwargs, | |
) | |
gen_kwargs = dict(input_ids=input_ids, | |
generation_config=generation_config, | |
return_dict_in_generate=True, | |
output_scores=True, | |
max_new_tokens=max_new_tokens, # prompt + new | |
min_new_tokens=min_new_tokens, # prompt + new | |
early_stopping=early_stopping, # False, True, "never" | |
max_time=max_time, | |
stopping_criteria=stopping_criteria, | |
) | |
if 'gpt2' in base_model.lower(): | |
gen_kwargs.update(dict(bos_token_id=tokenizer.bos_token_id, pad_token_id=tokenizer.eos_token_id)) | |
elif 'mbart-' in base_model.lower(): | |
assert tgt_lang is not None | |
tgt_lang = languages_covered()[tgt_lang] | |
gen_kwargs.update(dict(forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang])) | |
else: | |
gen_kwargs.update(dict(pad_token_id=tokenizer.eos_token_id)) | |
decoder = functools.partial(tokenizer.decode, | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=True, | |
) | |
decoder_raw = functools.partial(tokenizer.decode, | |
skip_special_tokens=False, | |
clean_up_tokenization_spaces=True, | |
) | |
with torch.no_grad(): | |
# decoded tokenized prompt can deviate from prompt due to special characters | |
inputs_decoded = decoder(input_ids[0]) | |
inputs_decoded_raw = decoder_raw(input_ids[0]) | |
if inputs_decoded == prompt: | |
# normal | |
pass | |
elif inputs_decoded.lstrip() == prompt.lstrip(): | |
# sometimes extra space in front, make prompt same for prompt removal | |
prompt = inputs_decoded | |
elif inputs_decoded_raw == prompt: | |
# some models specify special tokens that are part of normal prompt, so can't skip them | |
inputs_decoded_raw = inputs_decoded | |
decoder = decoder_raw | |
else: | |
print("WARNING: Special characters in prompt", flush=True) | |
if stream_output: | |
def generate(callback=None, **kwargs): | |
# re-order stopping so Stream first and get out all chunks before stop for other reasons | |
stopping_criteria0 = kwargs.get('stopping_criteria', StoppingCriteriaList()).copy() | |
kwargs['stopping_criteria'] = StoppingCriteriaList() | |
kwargs['stopping_criteria'].append(Stream(func=callback)) | |
for stopping_criteria1 in stopping_criteria0: | |
kwargs['stopping_criteria'].append(stopping_criteria1) | |
try: | |
model.generate(**kwargs) | |
except torch.cuda.OutOfMemoryError as e: | |
print("GPU OOM: prompt: %s inputs_decoded: %s exception: %s" % (prompt, inputs_decoded, str(e)), | |
flush=True) | |
if kwargs['input_ids'] is not None: | |
kwargs['input_ids'].cpu() | |
kwargs['input_ids'] = None | |
traceback.print_exc() | |
clear_torch_cache() | |
return | |
except RuntimeError as e: | |
if 'Expected all tensors to be on the same device' in str(e) or \ | |
'expected scalar type Half but found Float' in str(e) or \ | |
'probability tensor contains either' in str(e): | |
print( | |
"GPU Error: prompt: %s inputs_decoded: %s exception: %s" % (prompt, inputs_decoded, str(e)), | |
flush=True) | |
traceback.print_exc() | |
clear_torch_cache() | |
return | |
else: | |
raise | |
decoded_output = None | |
for output in CallbackToGenerator(generate, callback=None, **gen_kwargs): | |
decoded_output = decoder(output) | |
if output[-1] in [tokenizer.eos_token_id]: | |
if debug: | |
print("HIT EOS", flush=True) | |
break | |
if any(ele in decoded_output for ele in hard_stop_list): | |
raise StopIteration | |
yield prompter.get_response(decoded_output, prompt=inputs_decoded, | |
sanitize_bot_response=sanitize_bot_response) | |
if save_dir and decoded_output: | |
save_generate_output(output=decoded_output, base_model=base_model, save_dir=save_dir) | |
else: | |
outputs = model.generate(**gen_kwargs) | |
outputs = [decoder(s) for s in outputs.sequences] | |
yield prompter.get_response(outputs, prompt=inputs_decoded, | |
sanitize_bot_response=sanitize_bot_response) | |
if save_dir and outputs and len(outputs) >= 1: | |
decoded_output = prompt + outputs[0] | |
save_generate_output(output=decoded_output, base_model=base_model, save_dir=save_dir) | |
def get_generate_params(model_lower, chat, | |
stream_output, show_examples, | |
prompt_type, temperature, top_p, top_k, num_beams, | |
max_new_tokens, min_new_tokens, early_stopping, max_time, | |
repetition_penalty, num_return_sequences, | |
do_sample): | |
use_defaults = False | |
use_default_examples = True | |
examples = [] | |
task_info = f"{prompt_type}" | |
if model_lower: | |
print(f"Using Model {model_lower}", flush=True) | |
else: | |
print("No model defined yet", flush=True) | |
min_new_tokens = min_new_tokens if min_new_tokens is not None else 0 | |
early_stopping = early_stopping if early_stopping is not None else False | |
max_time_defaults = 60 * 3 | |
max_time = max_time if max_time is not None else max_time_defaults | |
if not prompt_type and model_lower in inv_prompt_type_to_model_lower: | |
prompt_type = inv_prompt_type_to_model_lower[model_lower] | |
if show_examples is None: | |
if chat: | |
show_examples = False | |
else: | |
show_examples = True | |
summarize_example1 = """Jeff: Can I train a ? Transformers model on Amazon SageMaker? | |
Philipp: Sure you can use the new Hugging Face Deep Learning Container. | |
Jeff: ok. | |
Jeff: and how can I get started? | |
Jeff: where can I find documentation? | |
Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face""" | |
if 'bart-large-cnn-samsum' in model_lower or 'flan-t5-base-samsum' in model_lower: | |
placeholder_instruction = summarize_example1 | |
placeholder_input = "" | |
use_defaults = True | |
use_default_examples = False | |
examples += [ | |
[placeholder_instruction, "", "", stream_output, 'plain', 1.0, 1.0, 50, 1, 128, 0, False, max_time_defaults, | |
1.0, 1, | |
False]] | |
task_info = "Summarization" | |
elif 't5-' in model_lower or 't5' == model_lower or 'flan-' in model_lower: | |
placeholder_instruction = "The square root of x is the cube root of y. What is y to the power of 2, if x = 4?" | |
placeholder_input = "" | |
use_defaults = True | |
use_default_examples = True | |
task_info = "Multi-Task: Q/A, translation, Chain-of-Thought, Logical Reasoning, Summarization, etc. Best to use task prefix as trained on, e.g. `translate English to German: ` (space after colon)" | |
elif 'mbart-' in model_lower: | |
placeholder_instruction = "The girl has long hair." | |
placeholder_input = "" | |
use_defaults = True | |
use_default_examples = False | |
examples += [ | |
[placeholder_instruction, "", "", stream_output, 'plain', 1.0, 1.0, 50, 1, 128, 0, False, max_time_defaults, | |
1.0, 1, | |
False]] | |
elif 'gpt2' in model_lower: | |
placeholder_instruction = "The sky is" | |
placeholder_input = "" | |
prompt_type = prompt_type or 'plain' | |
use_default_examples = True # some will be odd "continuations" but can be ok | |
examples += [ | |
[placeholder_instruction, "", "", stream_output, 'plain', 1.0, 1.0, 50, 1, 128, 0, False, max_time_defaults, | |
1.0, 1, | |
False]] | |
task_info = "Auto-complete phrase, code, etc." | |
use_defaults = True | |
else: | |
if chat: | |
placeholder_instruction = "Enter a question or imperative." | |
else: | |
placeholder_instruction = "Give detailed answer for whether Einstein or Newton is smarter." | |
placeholder_input = "" | |
if model_lower: | |
prompt_type = prompt_type or 'human_bot' | |
else: | |
prompt_type = '' | |
examples += [[summarize_example1, 'Summarize' if prompt_type not in ['plain', 'instruct_simple'] else '', "", | |
stream_output, prompt_type or 'plain', 0.1, 0.75, 40, 4, 256, 0, False, max_time_defaults, 1.0, 1, False]] | |
task_info = "No task" | |
if prompt_type == 'instruct': | |
task_info = "Answer question or follow imperative as instruction with optionally input." | |
elif prompt_type == 'plain': | |
task_info = "Auto-complete phrase, code, etc." | |
elif prompt_type == 'human_bot': | |
if chat: | |
task_info = "Chat (Shift-Enter to give question/imperative, input concatenated with instruction)" | |
else: | |
task_info = "Ask question/imperative (input concatenated with instruction)" | |
# revert to plain if still nothing | |
prompt_type = prompt_type or 'plain' | |
if use_defaults: | |
temperature = 1.0 if temperature is None else temperature | |
top_p = 1.0 if top_p is None else top_p | |
top_k = 40 if top_k is None else top_k | |
num_beams = num_beams or 1 | |
max_new_tokens = max_new_tokens or 128 | |
repetition_penalty = repetition_penalty or 1.07 | |
num_return_sequences = min(num_beams, num_return_sequences or 1) | |
do_sample = False if do_sample is None else do_sample | |
else: | |
temperature = 0.1 if temperature is None else temperature | |
top_p = 0.75 if top_p is None else top_p | |
top_k = 40 if top_k is None else top_k | |
if chat: | |
num_beams = num_beams or 1 | |
else: | |
num_beams = num_beams or 4 | |
max_new_tokens = max_new_tokens or 256 | |
repetition_penalty = repetition_penalty or 1.07 | |
num_return_sequences = min(num_beams, num_return_sequences or 1) | |
do_sample = False if do_sample is None else do_sample | |
params_list = ["", stream_output, prompt_type, temperature, top_p, top_k, num_beams, max_new_tokens, min_new_tokens, | |
early_stopping, max_time, repetition_penalty, num_return_sequences, do_sample] | |
if use_default_examples: | |
examples += [ | |
["Translate English to French", "Good morning"] + params_list, | |
["Give detailed answer for whether Einstein or Newton is smarter.", ''] + params_list, | |
["Explain in detailed list, all the best practices for coding in python.", ''] + params_list, | |
[ | |
"Create a markdown table with 3 rows for the primary colors, and 2 columns, with color name and hex codes.", | |
''] + params_list, | |
['Translate to German: My name is Arthur', ''] + params_list, | |
["Please answer to the following question. Who is going to be the next Ballon d'or?", ''] + params_list, | |
['Can Geoffrey Hinton have a conversation with George Washington? Give the rationale before answering.', | |
''] + params_list, | |
['Please answer the following question. What is the boiling point of Nitrogen?', ''] + params_list, | |
['Answer the following yes/no question. Can you write a whole Haiku in a single tweet?', ''] + params_list, | |
["Simplify the following expression: (False or False and True). Explain your answer.", ''] + params_list, | |
[ | |
"Premise: At my age you will probably have learnt one lesson. Hypothesis: It's not certain how many lessons you'll learn by your thirties. Does the premise entail the hypothesis?", | |
''] + params_list, | |
['The square root of x is the cube root of y. What is y to the power of 2, if x = 4?', ''] + params_list, | |
[ | |
'Answer the following question by reasoning step by step. The cafeteria had 23 apples. If they used 20 for lunch, and bought 6 more, how many apple do they have?', | |
''] + params_list, | |
["""def area_of_rectangle(a: float, b: float): | |
\"\"\"Return the area of the rectangle.\"\"\"""", ''] + params_list, | |
["""# a function in native python: | |
def mean(a): | |
return sum(a)/len(a) | |
# the same function using numpy: | |
import numpy as np | |
def mean(a):""", ''] + params_list, | |
["""X = np.random.randn(100, 100) | |
y = np.random.randint(0, 1, 100) | |
# fit random forest classifier with 20 estimators""", ''] + params_list, | |
] | |
src_lang = "English" | |
tgt_lang = "Russian" | |
return placeholder_instruction, placeholder_input, \ | |
stream_output, show_examples, \ | |
prompt_type, temperature, top_p, top_k, num_beams, \ | |
max_new_tokens, min_new_tokens, early_stopping, max_time, \ | |
repetition_penalty, num_return_sequences, \ | |
do_sample, \ | |
src_lang, tgt_lang, \ | |
examples, \ | |
task_info | |
def languages_covered(): | |
# https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt#languages-covered | |
covered = """Arabic (ar_AR), Czech (cs_CZ), German (de_DE), English (en_XX), Spanish (es_XX), Estonian (et_EE), Finnish (fi_FI), French (fr_XX), Gujarati (gu_IN), Hindi (hi_IN), Italian (it_IT), Japanese (ja_XX), Kazakh (kk_KZ), Korean (ko_KR), Lithuanian (lt_LT), Latvian (lv_LV), Burmese (my_MM), Nepali (ne_NP), Dutch (nl_XX), Romanian (ro_RO), Russian (ru_RU), Sinhala (si_LK), Turkish (tr_TR), Vietnamese (vi_VN), Chinese (zh_CN), Afrikaans (af_ZA), Azerbaijani (az_AZ), Bengali (bn_IN), Persian (fa_IR), Hebrew (he_IL), Croatian (hr_HR), Indonesian (id_ID), Georgian (ka_GE), Khmer (km_KH), Macedonian (mk_MK), Malayalam (ml_IN), Mongolian (mn_MN), Marathi (mr_IN), Polish (pl_PL), Pashto (ps_AF), Portuguese (pt_XX), Swedish (sv_SE), Swahili (sw_KE), Tamil (ta_IN), Telugu (te_IN), Thai (th_TH), Tagalog (tl_XX), Ukrainian (uk_UA), Urdu (ur_PK), Xhosa (xh_ZA), Galician (gl_ES), Slovene (sl_SI)""" | |
covered = covered.split(', ') | |
covered = {x.split(' ')[0]: x.split(' ')[1].replace(')', '').replace('(', '') for x in covered} | |
return covered | |
def test_test_prompt(prompt_type='instruct', data_point=0): | |
example_data_point = example_data_points[data_point] | |
example_data_point.pop('output', None) | |
return generate_prompt(example_data_point, prompt_type, False, False) | |
if __name__ == "__main__": | |
print(""" | |
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 --master_port=1234 generate.py --base_model='EleutherAI/gpt-j-6B' --lora_weights=lora-alpaca_6B | |
python generate.py --base_model='EleutherAI/gpt-j-6B' --lora_weights='lora-alpaca_6B' | |
python generate.py --base_model='EleutherAI/gpt-neox-20b' --lora_weights='lora-alpaca_20B' | |
# generate without lora weights, no prompt | |
python generate.py --base_model='EleutherAI/gpt-neox-20b' --prompt_type='plain' | |
python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='dai_faq' | |
python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='dai_faq' --lora_weights='lora_20B_daifaq' | |
# OpenChatKit settings: | |
python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='human_bot --debug=True --num_beams=1 --temperature=0.6 --top_k=40 --top_p=1.0 | |
python generate.py --base_model='distilgpt2' --prompt_type='plain' --debug=True --num_beams=1 --temperature=0.6 --top_k=40 --top_p=1.0 --share=False | |
python generate.py --base_model='t5-large' --prompt_type='simple_instruct' | |
python generate.py --base_model='philschmid/bart-large-cnn-samsum' | |
python generate.py --base_model='philschmid/flan-t5-base-samsum' | |
python generate.py --base_model='facebook/mbart-large-50-many-to-many-mmt' | |
python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='human_bot' --lora_weights='GPT-NeoXT-Chat-Base-20B.merged.json.8_epochs.57b2892c53df5b8cefac45f84d019cace803ef26.28' | |
must have 4*48GB GPU and run without 8bit in order for sharding to work with infer_devices=False | |
can also pass --prompt_type='human_bot' and model can somewhat handle instructions without being instruct tuned | |
python generate.py --base_model=decapoda-research/llama-65b-hf --load_8bit=False --infer_devices=False --prompt_type='human_bot' | |
python generate.py --base_model=h2oai/h2ogpt-oig-oasst1-256-6.9b | |
""", flush=True) | |
fire.Fire(main) | |