Spaces:
Sleeping
Sleeping
Commit
·
2b89dc1
1
Parent(s):
d1cd7f1
adding you tube processing LLM
Browse files- app.py +127 -0
- chatops.py +23 -0
- requirements.txt +11 -0
app.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import time
|
4 |
+
import logging
|
5 |
+
from langchain.document_loaders import PDFMinerLoader,CSVLoader ,UnstructuredWordDocumentLoader,TextLoader,OnlinePDFLoader
|
6 |
+
from langchain.text_splitter import CharacterTextSplitter
|
7 |
+
from langchain.embeddings import SentenceTransformerEmbeddings
|
8 |
+
from langchain.vectorstores import FAISS
|
9 |
+
from langchain import HuggingFaceHub
|
10 |
+
from langchain.chains import RetrievalQA
|
11 |
+
from langchain.prompts import PromptTemplate
|
12 |
+
from langchain.docstore.document import Document
|
13 |
+
from youtube_transcript_api import YouTubeTranscriptApi
|
14 |
+
from . import chatops
|
15 |
+
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
DEVICE = 'cpu'
|
19 |
+
MAX_NEW_TOKENS = 4096
|
20 |
+
DEFAULT_TEMPERATURE = 0.1
|
21 |
+
DEFAULT_MAX_NEW_TOKENS = 2048
|
22 |
+
MAX_INPUT_TOKEN_LENGTH = 4000
|
23 |
+
DEFAULT_CHAR_LENGTH = 1000
|
24 |
+
|
25 |
+
def loading_file():
|
26 |
+
return "Loading..."
|
27 |
+
|
28 |
+
|
29 |
+
def get_text_from_youtube_link(video_link,max_video_length=800):
|
30 |
+
video_text = ""
|
31 |
+
video_id = video_link.split("watch?v=")[1].split("&")[0]
|
32 |
+
srt = YouTubeTranscriptApi.get_transcript(video_id)
|
33 |
+
for text_data in srt:
|
34 |
+
video_text = video_text + " " + text_data.get("text")
|
35 |
+
if len(video_text) > max_video_length:
|
36 |
+
return video_text[0:max_video_length]
|
37 |
+
else:
|
38 |
+
return video_text
|
39 |
+
|
40 |
+
def process_documents(documents,data_chunk=1500,chunk_overlap=100):
|
41 |
+
text_splitter = CharacterTextSplitter(chunk_size=data_chunk, chunk_overlap=chunk_overlap,separator='\n')
|
42 |
+
texts = text_splitter.split_documents(documents)
|
43 |
+
return texts
|
44 |
+
|
45 |
+
def process_youtube_link(link, document_name="youtube-content"):
|
46 |
+
try:
|
47 |
+
metadata = {"source": f"{document_name}.txt"}
|
48 |
+
return [Document(page_content=get_text_from_youtube_link(video_link=link), metadata=metadata)]
|
49 |
+
except Exception as err:
|
50 |
+
logger.error(f'Error in reading document. {err}')
|
51 |
+
|
52 |
+
|
53 |
+
def youtube_chat(youtube_link,API_key,llm='HuggingFace',temperature=0.1,max_tokens=1096,char_length=1500):
|
54 |
+
|
55 |
+
document = process_youtube_link(link=youtube_link)
|
56 |
+
embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-base',model_kwargs={"device": DEVICE})
|
57 |
+
texts = process_documents(documents=document)
|
58 |
+
global vector_db
|
59 |
+
vector_db = FAISS.from_documents(documents=texts, embedding= embedding_model)
|
60 |
+
global qa
|
61 |
+
qa = RetrievalQA.from_chain_type(llm=chatops.chat_application(llm_service=llm,key=API_key,
|
62 |
+
temperature=temperature,
|
63 |
+
max_tokens=max_tokens
|
64 |
+
),
|
65 |
+
chain_type='stuff',
|
66 |
+
retriever=vector_db.as_retriever(),
|
67 |
+
# chain_type_kwargs=chain_type_kwargs,
|
68 |
+
return_source_documents=True
|
69 |
+
)
|
70 |
+
return "Youtube link Processing completed ..."
|
71 |
+
|
72 |
+
|
73 |
+
css="""
|
74 |
+
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
|
75 |
+
"""
|
76 |
+
|
77 |
+
title = """
|
78 |
+
<div style="text-align: center;max-width: 700px;">
|
79 |
+
<h1>Chat on You Tube video data • OpenAI/HuggingFace</h1>
|
80 |
+
<p style="text-align: center;">Upload a You tube Link, to create its captions and load them as embeddings <br />
|
81 |
+
once status is ready, you can start asking questions about the content you uploaded.<br />
|
82 |
+
The repo provides you an option to use HuggingFace/OpenAI as LLM's, make sure to add your API Key before proceding.
|
83 |
+
</p>
|
84 |
+
</div>
|
85 |
+
"""
|
86 |
+
|
87 |
+
with gr.Blocks(css=css) as demo:
|
88 |
+
with gr.Column(elem_id="col-container"):
|
89 |
+
gr.HTML(title)
|
90 |
+
|
91 |
+
with gr.Group():
|
92 |
+
chatbot = gr.Chatbot(height=300)
|
93 |
+
with gr.Row():
|
94 |
+
question = gr.Textbox(label="Type your question !",lines=1).style(full_width=True)
|
95 |
+
submit_btn = gr.Button(value="Send message", variant="primary", scale = 1)
|
96 |
+
clean_chat_btn = gr.Button("Delete Chat")
|
97 |
+
|
98 |
+
with gr.Column():
|
99 |
+
with gr.Box():
|
100 |
+
LLM_option = gr.Dropdown(['HuggingFace','OpenAI'],label='Large Language Model Selection',info='LLM Service')
|
101 |
+
API_key = gr.Textbox(label="Add API key", type="password",autofocus=True)
|
102 |
+
with gr.Accordion(label='Advanced options', open=False):
|
103 |
+
max_new_tokens = gr.Slider(
|
104 |
+
label='Max new tokens',
|
105 |
+
minimum=2048,
|
106 |
+
maximum=MAX_NEW_TOKENS,
|
107 |
+
step=1,
|
108 |
+
value=DEFAULT_MAX_NEW_TOKENS,
|
109 |
+
)
|
110 |
+
temperature = gr.Slider(
|
111 |
+
label='Temperature',
|
112 |
+
minimum=0.1,
|
113 |
+
maximum=4.0,
|
114 |
+
step=0.1,
|
115 |
+
value=DEFAULT_TEMPERATURE,
|
116 |
+
)
|
117 |
+
char_length = gr.Slider(
|
118 |
+
label='Max Character',
|
119 |
+
minimum= DEFAULT_CHAR_LENGTH,
|
120 |
+
maximum = 5*DEFAULT_CHAR_LENGTH,
|
121 |
+
step = 500,
|
122 |
+
value= 1500
|
123 |
+
)
|
124 |
+
|
125 |
+
with gr.Column():
|
126 |
+
with gr.Box():
|
127 |
+
add_link = gr.Textbox(label="Add your you tube Link",text_align='left',autofocus=True)
|
chatops.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
|
4 |
+
|
5 |
+
|
6 |
+
def get_openai_chat_model(API_key):
|
7 |
+
try:
|
8 |
+
from langchain.llms import OpenAI
|
9 |
+
except ImportError as err:
|
10 |
+
raise "{}, unable to load openAI. Please install openai and add OPENAIAPI_KEY"
|
11 |
+
os.environ["OPENAI_API_KEY"] = API_key
|
12 |
+
llm = OpenAI()
|
13 |
+
return llm
|
14 |
+
|
15 |
+
def get_hugging_face_model(model_id,API_key,temperature=0.1,max_tokens=4096):
|
16 |
+
try:
|
17 |
+
from langchain import HuggingFaceHub
|
18 |
+
except ImportError as err:
|
19 |
+
raise "{}, unable to load openAI. Please install openai and add OPENAIAPI_KEY"
|
20 |
+
chat_llm = HuggingFaceHub(huggingfacehub_api_token=API_key,
|
21 |
+
repo_id=model_id,
|
22 |
+
model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens})
|
23 |
+
return chat_llm
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai
|
2 |
+
tiktoken
|
3 |
+
chromadb
|
4 |
+
langchain
|
5 |
+
unstructured
|
6 |
+
unstructured[local-inference]
|
7 |
+
transformers
|
8 |
+
torch
|
9 |
+
faiss-cpu
|
10 |
+
sentence-transformers
|
11 |
+
youtube-transcript-api
|