Samarth991's picture
Update app.py
34a1486 verified
import time
import gradio as gr
import logging
from langchain_community.document_loaders import OnlinePDFLoader
# from langchain.document_loaders import PDFMinerLoader,CSVLoader ,UnstructuredWordDocumentLoader,TextLoader,OnlinePDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.embeddings import SentenceTransformerEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain.docstore.document import Document
from youtube_transcript_api import YouTubeTranscriptApi
import chatops
logger = logging.getLogger(__name__)
DEVICE = 'cpu'
MAX_NEW_TOKENS = 4096
DEFAULT_TEMPERATURE = 0.1
DEFAULT_MAX_NEW_TOKENS = 2048
MAX_INPUT_TOKEN_LENGTH = 4000
DEFAULT_CHAR_LENGTH = 1000
EXAMPLES = ["https://www.youtube.com/watch?v=aircAruvnKk&ab_channel=3Blue1Brown",
"https://www.youtube.com/watch?v=Ilg3gGewQ5U",
"https://www.youtube.com/watch?v=WUvTyaaNkzM"
]
def clear_chat():
return []
def get_text_from_youtube_link(video_link,max_video_length=800):
video_text = ""
video_id = video_link.split("watch?v=")[1].split("&")[0]
srt = YouTubeTranscriptApi.get_transcript(video_id)
for text_data in srt:
video_text = video_text + " " + text_data.get("text")
if len(video_text) > max_video_length:
print(video_text)
return video_text[0:max_video_length]
else:
print("SRT might be disabled for the video . Uunable to get SRT")
return video_text
def process_documents(documents,data_chunk=1500,chunk_overlap=100):
text_splitter = CharacterTextSplitter(chunk_size=data_chunk, chunk_overlap=chunk_overlap,separator='\n')
texts = text_splitter.split_documents(documents)
return texts
def process_youtube_link(link, document_name="youtube-content",char_length=1000):
try:
metadata = {"source": f"{document_name}.txt"}
return [Document(page_content=get_text_from_youtube_link(video_link=link,max_video_length=char_length), metadata=metadata)]
except Exception as err:
logger.error(f'Error in reading document. {err}')
def create_prompt():
prompt_template = """As a chatbot asnwer the questions regarding the content in the video.
Use the following context to answer.
If you don't know the answer, just say I don't know.
{context}
Question: {question}
Answer :"""
prompt = PromptTemplate(
template=prompt_template, input_variables=["context", "question"]
)
return prompt
def youtube_chat(youtube_link,API_key,llm='HuggingFace',temperature=0.1,max_tokens=1096,char_length=1500):
document = process_youtube_link(link=youtube_link,char_length=char_length)
print("docuemt:",document)
embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-base',model_kwargs={"device": DEVICE})
texts = process_documents(documents=document)
global vector_db
vector_db = FAISS.from_documents(documents=texts, embedding= embedding_model)
global qa
if llm == 'HuggingFace':
chat = chatops.get_hugging_face_model(
model_id="tiiuae/falcon-7b-instruct",
API_key=API_key,
temperature=temperature,
max_tokens=max_tokens
)
else:
chat = chatops.get_openai_chat_model(API_key=API_key)
chain_type_kwargs = {"prompt": create_prompt()}
qa = RetrievalQA.from_chain_type(llm=chat,
chain_type='stuff',
retriever=vector_db.as_retriever(),
chain_type_kwargs=chain_type_kwargs,
return_source_documents=True
)
return "Youtube link Processing completed ..."
def infer(question, history):
# res = []
# # for human, ai in history[:-1]:
# # pair = (human, ai)
# # res.append(pair)
# chat_history = res
result = qa({"query": question})
matching_docs_score = vector_db.similarity_search_with_score(question)
return result["result"]
def bot(history):
response = infer(history[-1][0], history)
history[-1][1] = ""
for character in response:
history[-1][1] += character
time.sleep(0.05)
yield history
def add_text(history, text):
history = history + [(text, None)]
return history, ""
css="""
#col-container {max-width: 2048px; margin-left: auto; margin-right: auto;}
"""
title = """
<div style="text-align: center;max-width: 2048px;">
<h1>Chat with Youtube Videos </h1>
<p style="text-align: center;">Upload a youtube link of any video-lecture/song/Research/Conference & ask Questions to chatbot with the tool.
<i> Tools uses State of the Art Models from HuggingFace/OpenAI so, make sure to add your key.</i>
</p>
</div>
"""
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column(elem_id="col-container"):
gr.HTML(title)
with gr.Column():
with gr.Row():
LLM_option = gr.Dropdown(['HuggingFace','OpenAI'],label='Select HuggingFace/OpenAI')
API_key = gr.Textbox(label="Add API key", type="password",autofocus=True)
with gr.Group():
chatbot = gr.Chatbot(height=270)
with gr.Row():
question = gr.Textbox(label="Type your question !",lines=1)
with gr.Row():
submit_btn = gr.Button(value="Send message", variant="primary", scale = 1)
clean_chat_btn = gr.Button("Delete Chat")
with gr.Column():
with gr.Row():
youtube_link = gr.Textbox(label="Add your you tube Link",text_align='left',autofocus=True)
with gr.Row():
load_youtube_bt = gr.Button("Process Youtube Link",)
langchain_status = gr.Textbox(label="Status", placeholder="", interactive = False)
with gr.Column():
with gr.Accordion(label='Advanced options', open=False):
max_new_tokens = gr.Slider(
label='Max new tokens',
minimum=2048,
maximum=MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
)
temperature = gr.Slider(label='Temperature',minimum=0.1,maximum=4.0,step=0.1,value=DEFAULT_TEMPERATURE,)
char_length = gr.Slider(label='Max Character',
minimum= DEFAULT_CHAR_LENGTH,
maximum = 5*DEFAULT_CHAR_LENGTH,
step = 500,value= 1500
)
load_youtube_bt.click(youtube_chat,inputs= [youtube_link,API_key,LLM_option,temperature,max_new_tokens,char_length],outputs=[langchain_status], queue=False)
clean_chat_btn.click(clear_chat, [], chatbot)
question.submit(add_text, inputs=[chatbot, question], outputs=[chatbot, question]).then(bot, chatbot, chatbot)
submit_btn.click(add_text, inputs=[chatbot, question], outputs=[chatbot, question]).then(bot, chatbot, chatbot)
demo.launch()