Spaces:
Sleeping
Sleeping
import time | |
import gradio as gr | |
import logging | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.embeddings import SentenceTransformerEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.chains import RetrievalQA | |
from langchain.prompts import PromptTemplate | |
from langchain.docstore.document import Document | |
import whisper_app | |
import llm_ops | |
FILE_EXT = ['wav','mp3'] | |
MAX_NEW_TOKENS = 4096 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
DEFAULT_TEMPERATURE = 0.1 | |
def create_logger(): | |
formatter = logging.Formatter('%(asctime)s:%(levelname)s:- %(message)s') | |
console_handler = logging.StreamHandler() | |
console_handler.setLevel(logging.INFO) | |
console_handler.setFormatter(formatter) | |
logger = logging.getLogger("APT_Realignment") | |
logger.setLevel(logging.INFO) | |
if not logger.hasHandlers(): | |
logger.addHandler(console_handler) | |
logger.propagate = False | |
return logger | |
def create_prompt(): | |
prompt_template = """Asnwer the questions regarding the content in the Audio . | |
Use the following context to answer. | |
If you don't know the answer, just say I don't know. | |
{context} | |
Question: {question} | |
Answer :""" | |
prompt = PromptTemplate( | |
template=prompt_template, input_variables=["context", "question"] | |
) | |
return prompt | |
logger = create_logger() | |
def process_documents(documents,data_chunk=1500,chunk_overlap=100): | |
text_splitter = CharacterTextSplitter(chunk_size=data_chunk, chunk_overlap=chunk_overlap,separator='\n') | |
texts = text_splitter.split_documents(documents) | |
return texts | |
def audio_processor(wav_file,API_key,wav_model='small',llm='HuggingFace',temperature=0.1,max_tokens=4096): | |
device='cpu' | |
logger.info("Audio File Name :",wav_file.name) | |
whisper = whisper_app.WHISPERModel(model_name=wav_model,device=device) | |
logger.info("Whisper Model Loaded || Model size:{}".format(wav_model)) | |
text_info = whisper.speech_to_text(audio_path=wav_file.name) | |
metadata = {"source": f"{wav_file}","duration":text_info['duration'],"language":text_info['language']} | |
document = [Document(page_content=text_info['text'], metadata=metadata)] | |
logger.info("Document",document) | |
logging.info("Loading General Text Embeddings (GTE) model{}".format('thenlper/gte-large')) | |
embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large',model_kwargs={"device": device}) | |
texts = process_documents(documents=document) | |
global vector_db | |
vector_db = FAISS.from_documents(documents=texts, embedding= embedding_model) | |
global qa | |
if llm == 'HuggingFace': | |
chat = llm_ops.get_hugging_face_model( | |
model_id="meta-llama/Llama-2-7b", | |
API_key=API_key, | |
temperature=temperature, | |
max_tokens=max_tokens | |
) | |
else: | |
chat = llm_ops.get_openai_chat_model(API_key=API_key) | |
chain_type_kwargs = {"prompt": create_prompt()} | |
qa = RetrievalQA.from_chain_type(llm=chat, | |
chain_type='stuff', | |
retriever=vector_db.as_retriever(), | |
chain_type_kwargs=chain_type_kwargs, | |
return_source_documents=True | |
) | |
return "Audio Processing completed ..." | |
def infer(question, history): | |
# res = [] | |
# for human, ai in history[:-1]: | |
# pair = (human, ai) | |
# res.append(pair) | |
# chat_history = res | |
result = qa({"query": question}) | |
matching_docs_score = vector_db.similarity_search_with_score(question) | |
logger.info("Matching Score :",matching_docs_score) | |
return result["result"] | |
def bot(history): | |
response = infer(history[-1][0], history) | |
history[-1][1] = "" | |
for character in response: | |
history[-1][1] += character | |
time.sleep(0.05) | |
yield history | |
def add_text(history, text): | |
history = history + [(text, None)] | |
return history, "" | |
def loading_file(): | |
return "Loading..." | |
css=""" | |
#col-container {max-width: 2048px; margin-left: auto; margin-right: auto;} | |
""" | |
title = """ | |
<div style="text-align: center;max-width: 2048px;"> | |
<h1>Q&A using LLAMA on Audio files</h1> | |
<p style="text-align: center;">Upload a Audio file/link and query LLAMA-chatbot. | |
<i> Tools uses State of the Art Models from HuggingFace/OpenAI so, make sure to add your key.</i> | |
</p> | |
</div> | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Row(): | |
with gr.Column(elem_id="col-container"): | |
gr.HTML(title) | |
with gr.Column(): | |
with gr.Row(): | |
LLM_option = gr.Dropdown(['HuggingFace','OpenAI'],label='Select HuggingFace/OpenAI') | |
API_key = gr.Textbox(label="Add API key", type="password",autofocus=True) | |
wav_model = gr.Dropdown(['small','medium','large'],label='Select Whisper model') | |
with gr.Group(): | |
chatbot = gr.Chatbot(height=270) | |
with gr.Row(): | |
question = gr.Textbox(label="Type your question !",lines=1,interactive=True) | |
with gr.Row(): | |
submit_btn = gr.Button(value="Send message", variant="primary", scale = 1) | |
clean_chat_btn = gr.Button("Delete Chat") | |
with gr.Column(): | |
with gr.Box(): | |
audio_file = gr.File(label="Upload Audio File ", file_types=FILE_EXT, type="file") | |
with gr.Accordion(label='Advanced options', open=False): | |
max_new_tokens = gr.Slider( | |
label='Max new tokens', | |
minimum=2048, | |
maximum=MAX_NEW_TOKENS, | |
step=1, | |
value=DEFAULT_MAX_NEW_TOKENS, | |
) | |
temperature = gr.Slider( | |
label='Temperature', | |
minimum=0.1, | |
maximum=4.0, | |
step=0.1, | |
value=DEFAULT_TEMPERATURE, | |
) | |
with gr.Row(): | |
langchain_status = gr.Textbox(label="Status", placeholder="", interactive = False) | |
load_audio = gr.Button("Upload Audio File") | |
if audio_file: | |
load_audio.click(loading_file, None, langchain_status, queue=False) | |
load_audio.click(audio_processor, inputs=[audio_file,API_key,wav_model,LLM_option,temperature,max_new_tokens], outputs=[langchain_status], queue=False) | |
demo.launch() |