Samarth991's picture
Resolving audio path for file and url
fe5b216
raw
history blame
6.56 kB
import time
import gradio as gr
import logging
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain.docstore.document import Document
import whisper_app
import llm_ops
FILE_EXT = ['wav','mp3']
MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 1024
DEFAULT_TEMPERATURE = 0.1
def create_logger():
formatter = logging.Formatter('%(asctime)s:%(levelname)s:- %(message)s')
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
console_handler.setFormatter(formatter)
logger = logging.getLogger("APT_Realignment")
logger.setLevel(logging.INFO)
if not logger.hasHandlers():
logger.addHandler(console_handler)
logger.propagate = False
return logger
def create_prompt():
prompt_template = """Asnwer the questions regarding the content in the Audio .
Use the following context to answer.
If you don't know the answer, just say I don't know.
{context}
Question: {question}
Answer :"""
prompt = PromptTemplate(
template=prompt_template, input_variables=["context", "question"]
)
return prompt
logger = create_logger()
def process_documents(documents,data_chunk=1500,chunk_overlap=100):
text_splitter = CharacterTextSplitter(chunk_size=data_chunk, chunk_overlap=chunk_overlap,separator='\n')
texts = text_splitter.split_documents(documents)
return texts
def audio_processor(wav_file,API_key,wav_model='small',llm='HuggingFace',temperature=0.1,max_tokens=4096):
device='cpu'
logger.info("Audio File Name :",wav_file.name)
whisper = whisper_app.WHISPERModel(model_name=wav_model,device=device)
logger.info("Whisper Model Loaded || Model size:{}".format(wav_model))
text_info = whisper.speech_to_text(audio_path=wav_file.name)
metadata = {"source": f"{wav_file}","duration":text_info['duration'],"language":text_info['language']}
document = [Document(page_content=text_info['text'], metadata=metadata)]
logger.info("Document",document)
logging.info("Loading General Text Embeddings (GTE) model{}".format('thenlper/gte-large'))
embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large',model_kwargs={"device": device})
texts = process_documents(documents=document)
global vector_db
vector_db = FAISS.from_documents(documents=texts, embedding= embedding_model)
global qa
if llm == 'HuggingFace':
chat = llm_ops.get_hugging_face_model(
model_id="meta-llama/Llama-2-7b",
API_key=API_key,
temperature=temperature,
max_tokens=max_tokens
)
else:
chat = llm_ops.get_openai_chat_model(API_key=API_key)
chain_type_kwargs = {"prompt": create_prompt()}
qa = RetrievalQA.from_chain_type(llm=chat,
chain_type='stuff',
retriever=vector_db.as_retriever(),
chain_type_kwargs=chain_type_kwargs,
return_source_documents=True
)
return "Audio Processing completed ..."
def infer(question, history):
# res = []
# for human, ai in history[:-1]:
# pair = (human, ai)
# res.append(pair)
# chat_history = res
result = qa({"query": question})
matching_docs_score = vector_db.similarity_search_with_score(question)
logger.info("Matching Score :",matching_docs_score)
return result["result"]
def bot(history):
response = infer(history[-1][0], history)
history[-1][1] = ""
for character in response:
history[-1][1] += character
time.sleep(0.05)
yield history
def add_text(history, text):
history = history + [(text, None)]
return history, ""
def loading_file():
return "Loading..."
css="""
#col-container {max-width: 2048px; margin-left: auto; margin-right: auto;}
"""
title = """
<div style="text-align: center;max-width: 2048px;">
<h1>Q&A using LLAMA on Audio files</h1>
<p style="text-align: center;">Upload a Audio file/link and query LLAMA-chatbot.
<i> Tools uses State of the Art Models from HuggingFace/OpenAI so, make sure to add your key.</i>
</p>
</div>
"""
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column(elem_id="col-container"):
gr.HTML(title)
with gr.Column():
with gr.Row():
LLM_option = gr.Dropdown(['HuggingFace','OpenAI'],label='Select HuggingFace/OpenAI')
API_key = gr.Textbox(label="Add API key", type="password",autofocus=True)
wav_model = gr.Dropdown(['small','medium','large'],label='Select Whisper model')
with gr.Group():
chatbot = gr.Chatbot(height=270)
with gr.Row():
question = gr.Textbox(label="Type your question !",lines=1,interactive=True)
with gr.Row():
submit_btn = gr.Button(value="Send message", variant="primary", scale = 1)
clean_chat_btn = gr.Button("Delete Chat")
with gr.Column():
with gr.Box():
audio_file = gr.File(label="Upload Audio File ", file_types=FILE_EXT, type="file")
with gr.Accordion(label='Advanced options', open=False):
max_new_tokens = gr.Slider(
label='Max new tokens',
minimum=2048,
maximum=MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
)
temperature = gr.Slider(
label='Temperature',
minimum=0.1,
maximum=4.0,
step=0.1,
value=DEFAULT_TEMPERATURE,
)
with gr.Row():
langchain_status = gr.Textbox(label="Status", placeholder="", interactive = False)
load_audio = gr.Button("Upload Audio File")
if audio_file:
load_audio.click(loading_file, None, langchain_status, queue=False)
load_audio.click(audio_processor, inputs=[audio_file,API_key,wav_model,LLM_option,temperature,max_new_tokens], outputs=[langchain_status], queue=False)
demo.launch()