Samarth991 commited on
Commit
cd6e927
·
1 Parent(s): 5899389

changes image quality check

Browse files
Files changed (1) hide show
  1. tool_utils/image_metadata.py +8 -7
tool_utils/image_metadata.py CHANGED
@@ -3,14 +3,15 @@ import numpy as np
3
  import cv2
4
  from skimage.restoration import estimate_sigma
5
  import logging
 
6
  def image_brightness(image,thresh=0.37):
7
  L,A,B = cv2.split(cv2.cvtColor(image,cv2.COLOR_BGR2LAB))
8
  norm_L = L/np.max(L)
9
  L_mean = np.mean(norm_L)
10
  if L_mean > thresh:
11
- return "image is Bright enough "
12
  else:
13
- return "image is not bright enough "
14
 
15
  def variance_of_laplacian(img,threshould=250):
16
  # compute the Laplacian of the image and then return the focus
@@ -20,20 +21,20 @@ def variance_of_laplacian(img,threshould=250):
20
  laplacian_value = cv2.Laplacian(gray, cv2.CV_64F).var()
21
  logging.info(laplacian_value)
22
  if laplacian_value <= threshould:
23
- return " Image is very blurry"
24
  elif laplacian_value <= 3*threshould:
25
- return " Image is visible but have some regions out of foucs."
26
  elif laplacian_value >= 3*threshould:
27
- return "Image is Very Sharp."
28
 
29
  def get_signal_to_noise_ratio(image):
30
  snr_text = None
31
  snr_value = estimate_sigma(cv2.cvtColor(image,cv2.COLOR_RGB2GRAY), average_sigmas=False)
32
  logging.info(snr_value)
33
  if snr_value > 1 :
34
- snr_text = "Signal to Noise is greater than 1 - More Signal in image "
35
  else:
36
- snr_text = "Signal to Noise is less than 1 - More Noise in image "
37
  return snr_text
38
 
39
 
 
3
  import cv2
4
  from skimage.restoration import estimate_sigma
5
  import logging
6
+
7
  def image_brightness(image,thresh=0.37):
8
  L,A,B = cv2.split(cv2.cvtColor(image,cv2.COLOR_BGR2LAB))
9
  norm_L = L/np.max(L)
10
  L_mean = np.mean(norm_L)
11
  if L_mean > thresh:
12
+ return "Image is bright enough to process object detection and segmentation task"
13
  else:
14
+ return "image is not bright enough to process object detection and segmentation task "
15
 
16
  def variance_of_laplacian(img,threshould=250):
17
  # compute the Laplacian of the image and then return the focus
 
21
  laplacian_value = cv2.Laplacian(gray, cv2.CV_64F).var()
22
  logging.info(laplacian_value)
23
  if laplacian_value <= threshould:
24
+ return "There is Blur/Gaussian noise in the image"
25
  elif laplacian_value <= 3*threshould:
26
+ return " There is Blur/Gaussian noise in few regions of the image."
27
  elif laplacian_value >= 3*threshould:
28
+ return "Image has high sharpness , no need to process futher."
29
 
30
  def get_signal_to_noise_ratio(image):
31
  snr_text = None
32
  snr_value = estimate_sigma(cv2.cvtColor(image,cv2.COLOR_RGB2GRAY), average_sigmas=False)
33
  logging.info(snr_value)
34
  if snr_value > 1 :
35
+ snr_text = "SnR is greater than 1 meaning : image has less noise "
36
  else:
37
+ snr_text = "SnR is less than 1 Meaning : image has noise , it needs to be processed . "
38
  return snr_text
39
 
40