Spaces:
Running
Running
import gradio as gr | |
import torch | |
from transformers import RobertaForSequenceClassification, RobertaTokenizer | |
import numpy as np | |
import tempfile | |
# Load model and tokenizer | |
model_name = "SamanthaStorm/abuse-pattern-detector-v2" | |
model = RobertaForSequenceClassification.from_pretrained(model_name) | |
tokenizer = RobertaTokenizer.from_pretrained(model_name) | |
# Define labels (total 17 labels) | |
LABELS = [ | |
"gaslighting", "mockery", "dismissiveness", "control", | |
"guilt_tripping", "apology_baiting", "blame_shifting", "projection", | |
"contradictory_statements", "manipulation", "deflection", "insults", | |
"obscure_formal", "recovery_phase", "suicidal_threat", "physical_threat", | |
"extreme_control" | |
] | |
# Custom thresholds per label (make sure these are exactly as in the original) | |
THRESHOLDS = { | |
"gaslighting": 0.15, | |
"mockery": 0.15, | |
"dismissiveness": 0.25, # Keep this as 0.25 (not 0.30) | |
"control": 0.13, | |
"guilt_tripping": 0.15, | |
"apology_baiting": 0.15, | |
"blame_shifting": 0.15, | |
"projection": 0.20, | |
"contradictory_statements": 0.15, | |
"manipulation": 0.15, | |
"deflection": 0.15, | |
"insults": 0.20, | |
"obscure_formal": 0.20, | |
"recovery_phase": 0.15, | |
"suicidal_threat": 0.08, | |
"physical_threat": 0.045, | |
"extreme_control": 0.30, | |
} | |
# Define label groups using slicing (first 14 are abuse patterns, last 3 are danger cues) | |
PATTERN_LABELS = LABELS[:14] | |
DANGER_LABELS = LABELS[14:] | |
def calculate_abuse_level(scores, thresholds): | |
triggered_scores = [score for label, score in zip(LABELS, scores) if score > thresholds[label]] | |
if not triggered_scores: | |
return 0.0 | |
return round(np.mean(triggered_scores) * 100, 2) | |
def interpret_abuse_level(score): | |
if score > 80: | |
return "Extreme / High Risk" | |
elif score > 60: | |
return "Severe / Harmful Pattern Present" | |
elif score > 40: | |
return "Likely Abuse" | |
elif score > 20: | |
return "Mild Concern" | |
else: | |
return "Very Low / Likely Safe" | |
def analyze_messages(input_text): | |
input_text = input_text.strip() | |
if not input_text: | |
return "Please enter a message for analysis.", None | |
# Tokenize and predict | |
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy() | |
# Count triggered labels using the correct slices | |
pattern_count = sum(score > THRESHOLDS[label] for label, score in zip(PATTERN_LABELS, scores[:14])) | |
danger_flag_count = sum(score > THRESHOLDS[label] for label, score in zip(DANGER_LABELS, scores[14:])) | |
# Abuse level calculation and severity interpretation | |
abuse_level = calculate_abuse_level(scores, THRESHOLDS) | |
abuse_description = interpret_abuse_level(abuse_level) | |
# Resource logic (example logic; adjust as needed) | |
if danger_flag_count >= 2: | |
resources = "Immediate assistance recommended. Please seek professional help or contact emergency services." | |
else: | |
resources = "For more information on abuse patterns, consider reaching out to support groups or professional counselors." | |
# Output combining counts, severity, and resource suggestion | |
result = ( | |
f"Abuse Patterns Detected: {pattern_count} out of {len(PATTERN_LABELS)}\n" | |
f"Danger Flags Detected: {danger_flag_count} out of {len(DANGER_LABELS)}\n" | |
f"Abuse Level: {abuse_level}% - {abuse_description}\n" | |
f"Resources: {resources}" | |
) | |
return result, scores | |
iface = gr.Interface( | |
fn=analyze_messages, | |
inputs=gr.inputs.Textbox(lines=10, placeholder="Enter message here..."), | |
outputs=["text", "json"], | |
title="Abuse Pattern Detector" | |
) | |
iface.launch() |