audio_translation / translate.py
Salman11223's picture
Update translate.py
084c4e2 verified
raw
history blame
14.3 kB
import os
import moviepy.editor as mp
import assemblyai as aai
import requests
import azure.cognitiveservices.speech as speechsdk
from moviepy.editor import AudioFileClip
from gradio_client import Client
class Translate:
def __init__(self, video_path,original_language, target_language):
self.video_path = video_path
self.target_language = target_language
self.original_language=original_language
self.aai_api_key = "c29eb650444a4ae4be6a787ebb15d5e2"
self.translation_api_key = "394833878dd54214886cd81a35ac35dc"
self.spechtotxt_key = "07ac642da789462d87ad47a790ec6d5f"
def extract_audio(self):
aai.settings.api_key = self.aai_api_key
video = mp.VideoFileClip(self.video_path)
audio = video.audio
audio_path = "audio.wav"
audio.write_audiofile(audio_path)
print("Audio extracted successfully!")
return audio_path
def org_language_parameters(self,original_language):
if original_language == 'English':
self.lan_code='en'
elif original_language =='German':
self.lan_code='de'
elif original_language =='French':
self.lan_code='fr'
elif original_language =='Spanish':
self.lan_code='es'
else:
self.lan_code = ''
def set_language_parameters(self, target_language):
if target_language == 'English':
self.language_code = 'en-US'
self.trans_code = 'en'
elif target_language == 'German':
self.language_code = 'de-DE'
self.trans_code = 'de'
elif target_language == 'French':
self.language_code = 'fr-CA'
self.trans_code = 'fr'
elif target_language == 'Spanish':
self.language_code = 'es-ES'
self.trans_code = 'es'
elif target_language == 'Urdu':
self.language_code = 'ur-PK'
self.trans_code = 'ur'
else:
# Handle unsupported languages or set default values
self.voice_names = []
self.language_code = ''
self.trans_code = ''
print("Target Language:", target_language)
print("Trans Code:", self.trans_code)
def get_voice_names(self):
return self.voice_names
def get_language_code(self):
return self.language_code
def transcribe_audio(self, audio_path):
aai.settings.api_key = self.aai_api_key
config = aai.TranscriptionConfig(self.lan_code)
transcriber = aai.Transcriber(config=config)
transcript = transcriber.transcribe(audio_path)
file_path = "transcript.srt"
filepath = "t.txt"
with open(file_path, "w") as file:
file.write(transcript.export_subtitles_srt())
with open(filepath, "w") as file:
file.write(transcript.text)
def translate_text(self, text):
base_url = "https://api.cognitive.microsofttranslator.com"
endpoint = "/translate"
headers = {
"Ocp-Apim-Subscription-Key": self.translation_api_key,
"Content-Type": "application/json",
"Ocp-Apim-Subscription-Region": "southeastasia"
}
params = {
"api-version": "3.0",
"to": self.trans_code
}
body = [{"text": text}]
response = requests.post(base_url + endpoint, headers=headers, params=params, json=body)
response.raise_for_status()
translation = response.json()[0]["translations"][0]["text"]
return translation
def transcribe_and_translate(self):
audio_path = self.extract_audio()
self.org_language_parameters(self.original_language)
self.transcribe_audio(audio_path)
self.set_language_parameters(self.target_language)
# Assuming t.txt contains the original text
with open("t.txt", 'r', encoding='utf-8') as text_file:
original_text = text_file.read()
self.org_language_parameters(self.original_language)
# Translate the entire original text
translated_text = self.translate_text(original_text)
# Write the translated text to a new text file
translated_text_path = "translated_text.txt"
with open(translated_text_path, 'w', encoding='utf-8') as translated_file:
translated_file.write(translated_text)
print("Translation complete. Translated text saved to:", translated_text_path)
return translated_text_path
# class Translate:
# def __init__(self, video_path, target_language,original_language,speaking_rate):
# self.video_path = video_path
# self.target_language = target_language
# self.original_language=original_language
# self.aai_api_key = "c29eb650444a4ae4be6a787ebb15d5e2"
# self.txtospech_key = "358c77527e48454cbf5bf2bd54f03161"
# self.translation_api_key = "394833878dd54214886cd81a35ac35dc"
# self.spechtotxt_key = "07ac642da789462d87ad47a790ec6d5f"
# self.speaking_rate= speaking_rate
# self.print_parameters()
# def print_parameters(self):
# print("Video_Path" , self.video_path)
# print("original_language" , self.original_language)
# print("target_language" , self.target_language)
# print("speaking_rate" , self.speaking_rate)
# def extract_audio(self):
# aai.settings.api_key = self.aai_api_key
# video = mp.VideoFileClip(self.video_path)
# audio = video.audio
# audio_path = "audio.wav"
# audio.write_audiofile(audio_path)
# print("Audio extracted successfully!")
# return audio_path
# def gender_detection(self):
# # gender_model_url = "https://salman11223-gender-detection.hf.space/--replicas/wml9f/"
# # gender_client = Client(gender_model_url)
# # gender = gender_client.predict(
# # 'audio.wav', api_name="/predict"
# # )
# # print(gender)
# # return gender
# return "male"
# def org_language_parameters(self,original_language):
# if original_language == 'English':
# self.lan_code='en'
# elif original_language =='German':
# self.lan_code='de'
# elif original_language =='French':
# self.lan_code='fr'
# elif original_language =='Spanish':
# self.lan_code='es'
# else:
# self.lan_code = ''
# def set_language_parameters(self, target_language, detected_gender):
# if target_language == 'English':
# self.language_code = 'en-US'
# self.trans_code = 'en'
# self.voice_names = 'en-US-GuyNeural' if detected_gender == 'male' else 'en-US-AriaNeural'
# elif target_language == 'German':
# self.language_code = 'de-DE'
# self.trans_code = 'de'
# self.voice_names = 'de-DE-ConradNeural' if detected_gender == 'male' else 'de-DE-KatjaNeural'
# elif target_language == 'French':
# self.language_code = 'fr-CA'
# self.trans_code = 'fr'
# self.voice_names = 'fr-CA-JeanNeural' if detected_gender == 'male' else 'fr-CA-SylvieNeural'
# elif target_language == 'Spanish':
# self.language_code = 'es-ES'
# self.trans_code = 'es'
# self.voice_names = 'es-ES-AlvaroNeural' if detected_gender == 'male' else 'es-ES-ElviraNeural'
# elif target_language == 'Urdu':
# self.language_code = 'ur-PK'
# self.trans_code = 'ur'
# self.voice_names = 'ur-PK-AsadNeural' if detected_gender == 'male' else 'ur-PK-UzmaNeural'
# else:
# # Handle unsupported languages or set default values
# self.voice_names = []
# self.language_code = ''
# self.trans_code = ''
# print("Target Language:", target_language)
# print("Trans Code:", self.trans_code)
# def get_voice_names(self):
# return self.voice_names
# def get_language_code(self):
# return self.language_code
# def get_audio_duration(self, audio_path):
# audio_clip = AudioFileClip(audio_path)
# audio_duration = audio_clip.duration
# return audio_duration
# def transcribe_audio(self, audio_path):
# aai.settings.api_key = self.aai_api_key
# config = aai.TranscriptionConfig(self.lan_code)
# transcriber = aai.Transcriber(config=config)
# transcript = transcriber.transcribe(audio_path)
# file_path = "transcript.srt"
# filepath = "t.txt"
# with open(file_path, "w") as file:
# file.write(transcript.export_subtitles_srt())
# with open(filepath, "w") as file:
# file.write(transcript.text)
# def generate_ssml(self, text, speaking_rate):
# # Construct SSML with the given text, speaking rate, voice name, and language code
# return f'<speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis" xml:lang="{self.language_code}"><voice name="{self.voice_names}"><prosody rate="{speaking_rate}">{text}</prosody></voice></speak>'
# def text_to_speech(self, text, apikey, reggion, out_aud_file, speaking_rate):
# ssml = self.generate_ssml(text, speaking_rate)
# speech_config = speechsdk.SpeechConfig(subscription=apikey, region=reggion)
# audio_config = speechsdk.audio.AudioOutputConfig(filename=out_aud_file)
# speech_synthesizer = speechsdk.SpeechSynthesizer(speech_config=speech_config, audio_config=audio_config)
# speech_synthesizer.speak_ssml_async(ssml).get()
# def translate_text(self, text):
# base_url = "https://api.cognitive.microsofttranslator.com"
# endpoint = "/translate"
# headers = {
# "Ocp-Apim-Subscription-Key": self.translation_api_key,
# "Content-Type": "application/json",
# "Ocp-Apim-Subscription-Region": "southeastasia"
# }
# params = {
# "api-version": "3.0",
# "to": self.trans_code
# }
# body = [{"text": text}]
# response = requests.post(base_url + endpoint, headers=headers, params=params, json=body)
# response.raise_for_status()
# translation = response.json()[0]["translations"][0]["text"]
# return translation
# def transcribe_and_translate(self):
# audio_path = self.extract_audio()
# self.org_language_parameters(self.original_language)
# self.transcribe_audio(audio_path)
# gender = self.gender_detection()
# print("Detected Gender:", gender)
# self.set_language_parameters(self.target_language,gender)
# with open("transcript.srt", 'r') as srt_file:
# original_srt_content = srt_file.read()
# original_subtitles = original_srt_content.strip().split('\n\n')
# translated_subtitles = []
# for subtitle in original_subtitles:
# lines = subtitle.split('\n')
# sequence_number = lines[0]
# timestamp = lines[1]
# original_text = '\n'.join(lines[2:])
# translated_text = self.translate_text(original_text)
# translated_subtitle = f"{sequence_number}\n{timestamp}\n{translated_text}"
# translated_subtitles.append(translated_subtitle)
# translated_srt_content = '\n\n'.join(translated_subtitles)
# translated_srt_path = "translated_file.srt"
# with open(translated_srt_path, 'w', encoding='utf-8') as srt_file:
# srt_file.write(translated_srt_content)
# # Loop through each translated subtitle and generate speech
# translated_audio_paths = []
# for subtitle in translated_subtitles:
# lines = subtitle.split('\n')
# sequence_number = lines[0]
# timestamp = lines[1]
# translated_text = '\n'.join(lines[2:])
# translated_audio_path = f"translated_audio_{sequence_number}.wav"
# self.text_to_speech(translated_text, self.txtospech_key, "southeastasia", translated_audio_path, self.speaking_rate)
# translated_audio_paths.append(translated_audio_path)
# # Create a list to store the audio clips
# translated_audio_clips = []
# # Loop through each translated audio path and create an AudioFileClip
# for audio_path in translated_audio_paths:
# translated_audio_clip = mp.AudioFileClip(audio_path)
# translated_audio_clips.append(translated_audio_clip)
# # Concatenate the translated audio clips into a single audio file
# translated_audio = mp.concatenate_audioclips(translated_audio_clips)
# # Define the output audio file path
# output_audio_path = "translated_audio.wav"
# # Write the concatenated translated audio to the output file
# translated_audio.write_audiofile(output_audio_path)
# # Load the original video
# video = mp.VideoFileClip(self.video_path)
# # Load the translated audio
# translated_audio = mp.AudioFileClip(output_audio_path)
# # Set the audio of the video to the translated audio
# video = video.set_audio(translated_audio)
# # Define the output video file path
# output_video_path = "translated_video.mp4"
# # Write the video with translated audio to the output file
# video.write_videofile(output_video_path, codec="libx264", audio_codec="aac")
# # Clean up temporary files
# self.cleanup_temp_files()
# def cleanup_temp_files(self):
# temp_files = ["audio.wav", "t.txt", "transcript.srt","translated_audio.wav","translated_file.srt"] + [f"translated_audio_{i}.wav" for i in range(1, 100)] # Adjust the range accordingly
# for file in temp_files:
# if os.path.exists(file):
# os.remove(file)
# print(f"Deleted {file}")