Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
from src.about import ( # CITATION_BUTTON_LABEL,; CITATION_BUTTON_TEXT,; EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( # EVAL_TYPES,; WeightType,; BENCHMARK_COLS,; EVAL_COLS,; NUMERIC_INTERVALS,; ModelType,; Precision, | |
COLS, | |
TYPES, | |
AutoEvalColumn, | |
fields, | |
) | |
# from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN | |
from src.envs import CRM_RESULTS_PATH | |
from src.populate import get_leaderboard_df_crm | |
original_df = get_leaderboard_df_crm(CRM_RESULTS_PATH, COLS) | |
# raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) | |
leaderboard_df = original_df.copy() | |
# leaderboard_df = leaderboard_df.style.format({"accuracy_metric_average": "{0:.2f}"}) | |
# Searching and filtering | |
def update_table( | |
hidden_df: pd.DataFrame, | |
columns: list, | |
accuracy_method_query: str, | |
# type_query: list, | |
# precision_query: str, | |
# size_query: list, | |
# show_deleted: bool, | |
# query: str, | |
): | |
# filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted) | |
# filtered_df = filter_queries(query, filtered_df) | |
filtered_df = filter_accuracy_method_func(hidden_df, accuracy_method_query) | |
df = select_columns(filtered_df, columns) | |
return df | |
def filter_accuracy_method_func(df: pd.DataFrame, accuracy_method_query: str) -> pd.DataFrame: | |
return df[df["Accuracy Method"] == accuracy_method_query] | |
# def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
# return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))] | |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: | |
always_here_cols = [ | |
AutoEvalColumn.model.name, | |
] | |
# We use COLS to maintain sorting | |
filtered_df = df[always_here_cols + [c for c in COLS if c in df.columns and c in columns]] | |
return filtered_df | |
# def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame: | |
# final_df = [] | |
# if query != "": | |
# queries = [q.strip() for q in query.split(";")] | |
# for _q in queries: | |
# _q = _q.strip() | |
# if _q != "": | |
# temp_filtered_df = search_table(filtered_df, _q) | |
# if len(temp_filtered_df) > 0: | |
# final_df.append(temp_filtered_df) | |
# if len(final_df) > 0: | |
# filtered_df = pd.concat(final_df) | |
# filtered_df = filtered_df.drop_duplicates( | |
# subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name] | |
# ) | |
# return filtered_df | |
# def filter_models( | |
# df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool | |
# ) -> pd.DataFrame: | |
# # Show all models | |
# filtered_df = df | |
# # if show_deleted: | |
# # filtered_df = df | |
# # else: # Show only still on the hub models | |
# # filtered_df = df[df[AutoEvalColumn.still_on_hub.name] is True] | |
# type_emoji = [t[0] for t in type_query] | |
# filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)] | |
# filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])] | |
# numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query])) | |
# params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce") | |
# mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) | |
# filtered_df = filtered_df.loc[mask] | |
# return filtered_df | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): | |
with gr.Row(): | |
with gr.Column(): | |
# with gr.Row(): | |
# search_bar = gr.Textbox( | |
# placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...", | |
# show_label=False, | |
# elem_id="search-bar", | |
# ) | |
with gr.Row(): | |
shown_columns = gr.CheckboxGroup( | |
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden], | |
value=[ | |
c.name | |
for c in fields(AutoEvalColumn) | |
if c.displayed_by_default and not c.hidden and not c.never_hidden | |
], | |
label="Select columns to show", | |
elem_id="column-select", | |
interactive=True, | |
) | |
# with gr.Row(): | |
# deleted_models_visibility = gr.Checkbox( | |
# value=False, label="Show gated/private/deleted models", interactive=True | |
# ) | |
# with gr.Column(min_width=320): | |
# # with gr.Box(elem_id="box-filter"): | |
# filter_columns_type = gr.CheckboxGroup( | |
# label="Model types", | |
# choices=[t.to_str() for t in ModelType], | |
# value=[t.to_str() for t in ModelType], | |
# interactive=True, | |
# elem_id="filter-columns-type", | |
# ) | |
# filter_columns_precision = gr.CheckboxGroup( | |
# label="Precision", | |
# choices=[i.value.name for i in Precision], | |
# value=[i.value.name for i in Precision], | |
# interactive=True, | |
# elem_id="filter-columns-precision", | |
# ) | |
# filter_columns_size = gr.CheckboxGroup( | |
# label="Model sizes (in billions of parameters)", | |
# choices=list(NUMERIC_INTERVALS.keys()), | |
# value=list(NUMERIC_INTERVALS.keys()), | |
# interactive=True, | |
# elem_id="filter-columns-size", | |
# ) | |
with gr.Row(): | |
with gr.Column(): | |
filter_use_case_type = gr.CheckboxGroup( | |
choices=["Summary", "Generation"], | |
value=["Summary", "Generation"], | |
label="Use Case Type", | |
info="", | |
interactive=True, | |
) | |
with gr.Column(): | |
filter_use_case = gr.Dropdown( | |
choices=list(original_df["Use Case Name"].unique()), | |
# value=list(original_df["Use Case Name"].unique()), | |
label="Use Case", | |
info="", | |
multiselect=True, | |
interactive=True, | |
) | |
with gr.Column(): | |
filter_metric_area = gr.CheckboxGroup( | |
choices=["Accuracy", "Speed (Latency)", "Trust & Safety", "Cost"], | |
value=["Accuracy", "Speed (Latency)", "Trust & Safety", "Cost"], | |
label="Metric Area", | |
info="", | |
interactive=True, | |
) | |
with gr.Column(): | |
filter_accuracy_method = gr.Radio( | |
choices=["Manual", "Auto"], | |
value="Manual", | |
label="Accuracy Method", | |
info="accuracy method", | |
interactive=True, | |
) | |
with gr.Column(): | |
filter_accuracy_threshold = gr.Number( | |
value="3", | |
label="Accuracy Threshold", | |
info="", | |
interactive=True, | |
) | |
with gr.Column(): | |
filter_llm = gr.CheckboxGroup( | |
choices=list(original_df["Model Name"].unique()), | |
value=list(original_df["Model Name"].unique()), | |
label="Model Name", | |
info="", | |
interactive=True, | |
) | |
with gr.Column(): | |
filter_llm_provider = gr.CheckboxGroup( | |
choices=list(original_df["LLM Provider"].unique()), | |
value=list(original_df["LLM Provider"].unique()), | |
label="LLM Provider", | |
info="", | |
interactive=True, | |
) | |
leaderboard_table = gr.components.Dataframe( | |
value=leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value], | |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value, | |
datatype=TYPES, | |
elem_id="leaderboard-table", | |
interactive=False, | |
visible=True, | |
) | |
# Dummy leaderboard for handling the case when the user uses backspace key | |
hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
value=original_df[COLS], | |
headers=COLS, | |
datatype=TYPES, | |
visible=False, | |
) | |
# search_bar.submit( | |
# update_table, | |
# [ | |
# hidden_leaderboard_table_for_search, | |
# shown_columns, | |
# filter_columns_type, | |
# filter_columns_precision, | |
# filter_columns_size, | |
# deleted_models_visibility, | |
# search_bar, | |
# ], | |
# leaderboard_table, | |
# ) | |
for selector in [ | |
shown_columns, | |
filter_accuracy_method, | |
# filter_columns_type, | |
# filter_columns_precision, | |
# filter_columns_size, | |
# deleted_models_visibility, | |
]: | |
selector.change( | |
update_table, | |
[ | |
hidden_leaderboard_table_for_search, | |
shown_columns, | |
filter_accuracy_method, | |
# filter_columns_type, | |
# filter_columns_precision, | |
# filter_columns_size, | |
# deleted_models_visibility, | |
# search_bar, | |
], | |
leaderboard_table, | |
queue=True, | |
) | |
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2): | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
# with gr.Row(): | |
# with gr.Accordion("π Citation", open=False): | |
# citation_button = gr.Textbox( | |
# value=CITATION_BUTTON_TEXT, | |
# label=CITATION_BUTTON_LABEL, | |
# lines=20, | |
# elem_id="citation-button", | |
# show_copy_button=True, | |
# ) | |
# scheduler = BackgroundScheduler() | |
# scheduler.add_job(restart_space, "interval", seconds=1800) | |
# scheduler.start() | |
demo.queue(default_concurrency_limit=40).launch() | |