EDICT / my_diffusers /pipelines /latent_diffusion_uncond /pipeline_latent_diffusion_uncond.py
root
secret auth
d77a781
import inspect
import warnings
from typing import Optional, Tuple, Union
import torch
from ...models import UNet2DModel, VQModel
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from ...schedulers import DDIMScheduler
class LDMPipeline(DiffusionPipeline):
r"""
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Parameters:
vqvae ([`VQModel`]):
Vector-quantized (VQ) Model to encode and decode images to and from latent representations.
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
[`DDIMScheduler`] is to be used in combination with `unet` to denoise the encoded image latens.
"""
def __init__(self, vqvae: VQModel, unet: UNet2DModel, scheduler: DDIMScheduler):
super().__init__()
scheduler = scheduler.set_format("pt")
self.register_modules(vqvae=vqvae, unet=unet, scheduler=scheduler)
@torch.no_grad()
def __call__(
self,
batch_size: int = 1,
generator: Optional[torch.Generator] = None,
eta: float = 0.0,
num_inference_steps: int = 50,
output_type: Optional[str] = "pil",
return_dict: bool = True,
**kwargs,
) -> Union[Tuple, ImagePipelineOutput]:
r"""
Args:
batch_size (`int`, *optional*, defaults to 1):
Number of images to generate.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
Returns:
[`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
`return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
generated images.
"""
if "torch_device" in kwargs:
device = kwargs.pop("torch_device")
warnings.warn(
"`torch_device` is deprecated as an input argument to `__call__` and will be removed in v0.3.0."
" Consider using `pipe.to(torch_device)` instead."
)
# Set device as before (to be removed in 0.3.0)
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
self.to(device)
latents = torch.randn(
(batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size),
generator=generator,
)
latents = latents.to(self.device)
self.scheduler.set_timesteps(num_inference_steps)
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_kwargs = {}
if accepts_eta:
extra_kwargs["eta"] = eta
for t in self.progress_bar(self.scheduler.timesteps):
# predict the noise residual
noise_prediction = self.unet(latents, t).sample
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_prediction, t, latents, **extra_kwargs).prev_sample
# decode the image latents with the VAE
image = self.vqvae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)