Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. | |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import importlib | |
import inspect | |
import os | |
from dataclasses import dataclass | |
from typing import List, Optional, Union | |
import numpy as np | |
import torch | |
import diffusers | |
import PIL | |
from huggingface_hub import snapshot_download | |
from PIL import Image | |
from tqdm.auto import tqdm | |
from .configuration_utils import ConfigMixin | |
from .utils import DIFFUSERS_CACHE, BaseOutput, logging | |
INDEX_FILE = "diffusion_pytorch_model.bin" | |
logger = logging.get_logger(__name__) | |
LOADABLE_CLASSES = { | |
"diffusers": { | |
"ModelMixin": ["save_pretrained", "from_pretrained"], | |
"SchedulerMixin": ["save_config", "from_config"], | |
"DiffusionPipeline": ["save_pretrained", "from_pretrained"], | |
"OnnxRuntimeModel": ["save_pretrained", "from_pretrained"], | |
}, | |
"transformers": { | |
"PreTrainedTokenizer": ["save_pretrained", "from_pretrained"], | |
"PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"], | |
"PreTrainedModel": ["save_pretrained", "from_pretrained"], | |
"FeatureExtractionMixin": ["save_pretrained", "from_pretrained"], | |
}, | |
} | |
ALL_IMPORTABLE_CLASSES = {} | |
for library in LOADABLE_CLASSES: | |
ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library]) | |
class ImagePipelineOutput(BaseOutput): | |
""" | |
Output class for image pipelines. | |
Args: | |
images (`List[PIL.Image.Image]` or `np.ndarray`) | |
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width, | |
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline. | |
""" | |
images: Union[List[PIL.Image.Image], np.ndarray] | |
class DiffusionPipeline(ConfigMixin): | |
r""" | |
Base class for all models. | |
[`DiffusionPipeline`] takes care of storing all components (models, schedulers, processors) for diffusion pipelines | |
and handles methods for loading, downloading and saving models as well as a few methods common to all pipelines to: | |
- move all PyTorch modules to the device of your choice | |
- enabling/disabling the progress bar for the denoising iteration | |
Class attributes: | |
- **config_name** ([`str`]) -- name of the config file that will store the class and module names of all | |
compenents of the diffusion pipeline. | |
""" | |
config_name = "model_index.json" | |
def register_modules(self, **kwargs): | |
# import it here to avoid circular import | |
from diffusers import pipelines | |
for name, module in kwargs.items(): | |
# retrive library | |
library = module.__module__.split(".")[0] | |
# check if the module is a pipeline module | |
pipeline_dir = module.__module__.split(".")[-2] | |
path = module.__module__.split(".") | |
is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir) | |
# if library is not in LOADABLE_CLASSES, then it is a custom module. | |
# Or if it's a pipeline module, then the module is inside the pipeline | |
# folder so we set the library to module name. | |
if library not in LOADABLE_CLASSES or is_pipeline_module: | |
library = pipeline_dir | |
# retrive class_name | |
class_name = module.__class__.__name__ | |
register_dict = {name: (library, class_name)} | |
# save model index config | |
self.register_to_config(**register_dict) | |
# set models | |
setattr(self, name, module) | |
def save_pretrained(self, save_directory: Union[str, os.PathLike]): | |
""" | |
Save all variables of the pipeline that can be saved and loaded as well as the pipelines configuration file to | |
a directory. A pipeline variable can be saved and loaded if its class implements both a save and loading | |
method. The pipeline can easily be re-loaded using the `[`~DiffusionPipeline.from_pretrained`]` class method. | |
Arguments: | |
save_directory (`str` or `os.PathLike`): | |
Directory to which to save. Will be created if it doesn't exist. | |
""" | |
self.save_config(save_directory) | |
model_index_dict = dict(self.config) | |
model_index_dict.pop("_class_name") | |
model_index_dict.pop("_diffusers_version") | |
model_index_dict.pop("_module", None) | |
for pipeline_component_name in model_index_dict.keys(): | |
sub_model = getattr(self, pipeline_component_name) | |
model_cls = sub_model.__class__ | |
save_method_name = None | |
# search for the model's base class in LOADABLE_CLASSES | |
for library_name, library_classes in LOADABLE_CLASSES.items(): | |
library = importlib.import_module(library_name) | |
for base_class, save_load_methods in library_classes.items(): | |
class_candidate = getattr(library, base_class) | |
if issubclass(model_cls, class_candidate): | |
# if we found a suitable base class in LOADABLE_CLASSES then grab its save method | |
save_method_name = save_load_methods[0] | |
break | |
if save_method_name is not None: | |
break | |
save_method = getattr(sub_model, save_method_name) | |
save_method(os.path.join(save_directory, pipeline_component_name)) | |
def to(self, torch_device: Optional[Union[str, torch.device]] = None): | |
if torch_device is None: | |
return self | |
module_names, _ = self.extract_init_dict(dict(self.config)) | |
for name in module_names.keys(): | |
module = getattr(self, name) | |
if isinstance(module, torch.nn.Module): | |
module.to(torch_device) | |
return self | |
def device(self) -> torch.device: | |
r""" | |
Returns: | |
`torch.device`: The torch device on which the pipeline is located. | |
""" | |
module_names, _ = self.extract_init_dict(dict(self.config)) | |
for name in module_names.keys(): | |
module = getattr(self, name) | |
if isinstance(module, torch.nn.Module): | |
return module.device | |
return torch.device("cpu") | |
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs): | |
r""" | |
Instantiate a PyTorch diffusion pipeline from pre-trained pipeline weights. | |
The pipeline is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). | |
The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come | |
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning | |
task. | |
The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those | |
weights are discarded. | |
Parameters: | |
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): | |
Can be either: | |
- A string, the *repo id* of a pretrained pipeline hosted inside a model repo on | |
https://huggingface.co/ Valid repo ids have to be located under a user or organization name, like | |
`CompVis/ldm-text2im-large-256`. | |
- A path to a *directory* containing pipeline weights saved using | |
[`~DiffusionPipeline.save_pretrained`], e.g., `./my_pipeline_directory/`. | |
torch_dtype (`str` or `torch.dtype`, *optional*): | |
Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype | |
will be automatically derived from the model's weights. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
cached versions if they exist. | |
resume_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to delete incompletely received files. Will attempt to resume the download if such a | |
file exists. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
output_loading_info(`bool`, *optional*, defaults to `False`): | |
Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages. | |
local_files_only(`bool`, *optional*, defaults to `False`): | |
Whether or not to only look at local files (i.e., do not try to download the model). | |
use_auth_token (`str` or *bool*, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated | |
when running `huggingface-cli login` (stored in `~/.huggingface`). | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any | |
identifier allowed by git. | |
mirror (`str`, *optional*): | |
Mirror source to accelerate downloads in China. If you are from China and have an accessibility | |
problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety. | |
Please refer to the mirror site for more information. specify the folder name here. | |
kwargs (remaining dictionary of keyword arguments, *optional*): | |
Can be used to overwrite load - and saveable variables - *i.e.* the pipeline components - of the | |
speficic pipeline class. The overritten components are then directly passed to the pipelines `__init__` | |
method. See example below for more information. | |
<Tip> | |
Passing `use_auth_token=True`` is required when you want to use a private model, *e.g.* | |
`"CompVis/stable-diffusion-v1-4"` | |
</Tip> | |
<Tip> | |
Activate the special ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use | |
this method in a firewalled environment. | |
</Tip> | |
Examples: | |
```py | |
>>> from diffusers import DiffusionPipeline | |
>>> # Download pipeline from huggingface.co and cache. | |
>>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256") | |
>>> # Download pipeline that requires an authorization token | |
>>> # For more information on access tokens, please refer to this section | |
>>> # of the documentation](https://huggingface.co/docs/hub/security-tokens) | |
>>> pipeline = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=True) | |
>>> # Download pipeline, but overwrite scheduler | |
>>> from diffusers import LMSDiscreteScheduler | |
>>> scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear") | |
>>> pipeline = DiffusionPipeline.from_pretrained( | |
... "CompVis/stable-diffusion-v1-4", scheduler=scheduler, use_auth_token=True | |
... ) | |
``` | |
""" | |
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) | |
resume_download = kwargs.pop("resume_download", False) | |
proxies = kwargs.pop("proxies", None) | |
local_files_only = kwargs.pop("local_files_only", False) | |
use_auth_token = kwargs.pop("use_auth_token", None) | |
revision = kwargs.pop("revision", None) | |
torch_dtype = kwargs.pop("torch_dtype", None) | |
provider = kwargs.pop("provider", None) | |
# 1. Download the checkpoints and configs | |
# use snapshot download here to get it working from from_pretrained | |
if not os.path.isdir(pretrained_model_name_or_path): | |
cached_folder = snapshot_download( | |
pretrained_model_name_or_path, | |
cache_dir=cache_dir, | |
resume_download=resume_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
use_auth_token=use_auth_token, | |
revision=revision, | |
) | |
else: | |
cached_folder = pretrained_model_name_or_path | |
config_dict = cls.get_config_dict(cached_folder) | |
# 2. Load the pipeline class, if using custom module then load it from the hub | |
# if we load from explicit class, let's use it | |
if cls != DiffusionPipeline: | |
pipeline_class = cls | |
else: | |
diffusers_module = importlib.import_module(cls.__module__.split(".")[0]) | |
pipeline_class = getattr(diffusers_module, config_dict["_class_name"]) | |
# some modules can be passed directly to the init | |
# in this case they are already instantiated in `kwargs` | |
# extract them here | |
expected_modules = set(inspect.signature(pipeline_class.__init__).parameters.keys()) | |
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs} | |
init_dict, _ = pipeline_class.extract_init_dict(config_dict, **kwargs) | |
init_kwargs = {} | |
# import it here to avoid circular import | |
from diffusers import pipelines | |
# 3. Load each module in the pipeline | |
for name, (library_name, class_name) in init_dict.items(): | |
is_pipeline_module = hasattr(pipelines, library_name) | |
loaded_sub_model = None | |
# if the model is in a pipeline module, then we load it from the pipeline | |
if name in passed_class_obj: | |
# 1. check that passed_class_obj has correct parent class | |
if not is_pipeline_module: | |
library = importlib.import_module(library_name) | |
class_obj = getattr(library, class_name) | |
importable_classes = LOADABLE_CLASSES[library_name] | |
class_candidates = {c: getattr(library, c) for c in importable_classes.keys()} | |
expected_class_obj = None | |
for class_name, class_candidate in class_candidates.items(): | |
if issubclass(class_obj, class_candidate): | |
expected_class_obj = class_candidate | |
if not issubclass(passed_class_obj[name].__class__, expected_class_obj): | |
raise ValueError( | |
f"{passed_class_obj[name]} is of type: {type(passed_class_obj[name])}, but should be" | |
f" {expected_class_obj}" | |
) | |
else: | |
logger.warn( | |
f"You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it" | |
" has the correct type" | |
) | |
# set passed class object | |
loaded_sub_model = passed_class_obj[name] | |
elif is_pipeline_module: | |
pipeline_module = getattr(pipelines, library_name) | |
class_obj = getattr(pipeline_module, class_name) | |
importable_classes = ALL_IMPORTABLE_CLASSES | |
class_candidates = {c: class_obj for c in importable_classes.keys()} | |
else: | |
# else we just import it from the library. | |
library = importlib.import_module(library_name) | |
class_obj = getattr(library, class_name) | |
importable_classes = LOADABLE_CLASSES[library_name] | |
class_candidates = {c: getattr(library, c) for c in importable_classes.keys()} | |
if loaded_sub_model is None: | |
load_method_name = None | |
for class_name, class_candidate in class_candidates.items(): | |
if issubclass(class_obj, class_candidate): | |
load_method_name = importable_classes[class_name][1] | |
load_method = getattr(class_obj, load_method_name) | |
loading_kwargs = {} | |
if issubclass(class_obj, torch.nn.Module): | |
loading_kwargs["torch_dtype"] = torch_dtype | |
if issubclass(class_obj, diffusers.OnnxRuntimeModel): | |
loading_kwargs["provider"] = provider | |
# check if the module is in a subdirectory | |
if os.path.isdir(os.path.join(cached_folder, name)): | |
loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs) | |
else: | |
# else load from the root directory | |
loaded_sub_model = load_method(cached_folder, **loading_kwargs) | |
init_kwargs[name] = loaded_sub_model # UNet(...), # DiffusionSchedule(...) | |
# 4. Instantiate the pipeline | |
model = pipeline_class(**init_kwargs) | |
return model | |
def numpy_to_pil(images): | |
""" | |
Convert a numpy image or a batch of images to a PIL image. | |
""" | |
if images.ndim == 3: | |
images = images[None, ...] | |
images = (images * 255).round().astype("uint8") | |
pil_images = [Image.fromarray(image) for image in images] | |
return pil_images | |
def progress_bar(self, iterable): | |
if not hasattr(self, "_progress_bar_config"): | |
self._progress_bar_config = {} | |
elif not isinstance(self._progress_bar_config, dict): | |
raise ValueError( | |
f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}." | |
) | |
return tqdm(iterable, **self._progress_bar_config) | |
def set_progress_bar_config(self, **kwargs): | |
self._progress_bar_config = kwargs | |