EDICT / edict_functions.py
bramw's picture
Update edict_functions.py
878881e
raw
history blame
41.3 kB
import torch
from transformers import CLIPModel, CLIPTextModel, CLIPTokenizer
from omegaconf import OmegaConf
import math
import imageio
from PIL import Image
import torchvision
import torch.nn.functional as F
import torch
import numpy as np
from PIL import Image
import time
import datetime
import torch
import sys
import os
from torchvision import datasets
import pickle
# StableDiffusion P2P implementation originally from https://github.com/bloc97/CrossAttentionControl
use_half_prec = True
if use_half_prec:
from my_half_diffusers import AutoencoderKL, UNet2DConditionModel
from my_half_diffusers.schedulers.scheduling_utils import SchedulerOutput
from my_half_diffusers import LMSDiscreteScheduler, PNDMScheduler, DDPMScheduler, DDIMScheduler
else:
from my_diffusers import AutoencoderKL, UNet2DConditionModel
from my_diffusers.schedulers.scheduling_utils import SchedulerOutput
from my_diffusers import LMSDiscreteScheduler, PNDMScheduler, DDPMScheduler, DDIMScheduler
torch_dtype = torch.float16 if use_half_prec else torch.float64
np_dtype = np.float16 if use_half_prec else np.float64
import random
from tqdm.auto import tqdm
from torch import autocast
from difflib import SequenceMatcher
# Build our CLIP model
model_path_clip = "openai/clip-vit-large-patch14"
clip_tokenizer = CLIPTokenizer.from_pretrained(model_path_clip)
clip_model = CLIPModel.from_pretrained(model_path_clip, torch_dtype=torch_dtype)
clip = clip_model.text_model
# Getting our HF Auth token
auth_token = os.environ.get('auth_token')
if auth_token is None:
with open('hf_auth', 'r') as f:
auth_token = f.readlines()[0].strip()
model_path_diffusion = "CompVis/stable-diffusion-v1-4"
# Build our SD model
unet = UNet2DConditionModel.from_pretrained(model_path_diffusion, subfolder="unet", use_auth_token=auth_token, revision="fp16", torch_dtype=torch_dtype)
vae = AutoencoderKL.from_pretrained(model_path_diffusion, subfolder="vae", use_auth_token=auth_token, revision="fp16", torch_dtype=torch_dtype)
# Push to devices w/ double precision
device = 'cuda'
if use_half_prec:
unet.to(device)
vae.to(device)
clip.to(device)
else:
unet.double().to(device)
vae.double().to(device)
clip.double().to(device)
print("Loaded all models")
def EDICT_editing(im_path,
base_prompt,
edit_prompt,
use_p2p=False,
steps=50,
mix_weight=0.93,
init_image_strength=0.8,
guidance_scale=3,
run_baseline=False,
width=512, height=512):
"""
Main call of our research, performs editing with either EDICT or DDIM
Args:
im_path: path to image to run on
base_prompt: conditional prompt to deterministically noise with
edit_prompt: desired text conditoining
steps: ddim steps
mix_weight: Weight of mixing layers.
Higher means more consistent generations but divergence in inversion
Lower means opposite
This is fairly tuned and can get good results
init_image_strength: Editing strength. Higher = more dramatic edit.
Typically [0.6, 0.9] is good range.
Definitely tunable per-image/maybe best results are at a different value
guidance_scale: classifier-free guidance scale
3 I've found is the best for both our method and basic DDIM inversion
Higher can result in more distorted results
run_baseline:
VERY IMPORTANT
True is EDICT, False is DDIM
Output:
PAIR of Images (tuple)
If run_baseline=True then [0] will be edit and [1] will be original
If run_baseline=False then they will be two nearly identical edited versions
"""
# Resize/center crop to 512x512 (Can do higher res. if desired)
if isinstance(im_path, str):
orig_im = load_im_into_format_from_path(im_path)
elif Image.isImageType(im_path):
width, height = im_path.size
# add max dim for sake of memory
max_dim = max(width, height)
if max_dim > 1024:
factor = 1024 / max_dim
width *= factor
height *= factor
width = int(width)
height = int(height)
im_path = im_path.resize((width, height))
min_dim = min(width, height)
if min_dim < 512:
factor = 512 / min_dim
width *= factor
height *= factor
width = int(width)
height = int(height)
im_path = im_path.resize((width, height))
width = width - (width%64)
height = height - (height%64)
orig_im = im_path # general_crop(im_path, width, height)
else:
orig_im = im_path
# compute latent pair (second one will be original latent if run_baseline=True)
latents = coupled_stablediffusion(base_prompt,
reverse=True,
init_image=orig_im,
init_image_strength=init_image_strength,
steps=steps,
mix_weight=mix_weight,
guidance_scale=guidance_scale,
run_baseline=run_baseline,
width=width, height=height)
# Denoise intermediate state with new conditioning
gen = coupled_stablediffusion(edit_prompt if (not use_p2p) else base_prompt,
None if (not use_p2p) else edit_prompt,
fixed_starting_latent=latents,
init_image_strength=init_image_strength,
steps=steps,
mix_weight=mix_weight,
guidance_scale=guidance_scale,
run_baseline=run_baseline,
width=width, height=height)
return gen
def img2img_editing(im_path,
edit_prompt,
steps=50,
init_image_strength=0.7,
guidance_scale=3):
"""
Basic SDEdit/img2img, given an image add some noise and denoise with prompt
"""
orig_im = load_im_into_format_from_path(im_path)
return baseline_stablediffusion(edit_prompt,
init_image_strength=init_image_strength,
steps=steps,
init_image=orig_im,
guidance_scale=guidance_scale)
def center_crop(im):
width, height = im.size # Get dimensions
min_dim = min(width, height)
left = (width - min_dim)/2
top = (height - min_dim)/2
right = (width + min_dim)/2
bottom = (height + min_dim)/2
# Crop the center of the image
im = im.crop((left, top, right, bottom))
return im
def general_crop(im, target_w, target_h):
width, height = im.size # Get dimensions
min_dim = min(width, height)
left = target_w / 2 # (width - min_dim)/2
top = target_h / 2 # (height - min_dim)/2
right = width - (target_w / 2) # (width + min_dim)/2
bottom = height - (target_h / 2) # (height + min_dim)/2
# Crop the center of the image
im = im.crop((left, top, right, bottom))
return im
def load_im_into_format_from_path(im_path):
return center_crop(Image.open(im_path)).resize((512,512))
#### P2P STUFF ####
def init_attention_weights(weight_tuples):
tokens_length = clip_tokenizer.model_max_length
weights = torch.ones(tokens_length)
for i, w in weight_tuples:
if i < tokens_length and i >= 0:
weights[i] = w
for name, module in unet.named_modules():
module_name = type(module).__name__
if module_name == "CrossAttention" and "attn2" in name:
module.last_attn_slice_weights = weights.to(device)
if module_name == "CrossAttention" and "attn1" in name:
module.last_attn_slice_weights = None
def init_attention_edit(tokens, tokens_edit):
tokens_length = clip_tokenizer.model_max_length
mask = torch.zeros(tokens_length)
indices_target = torch.arange(tokens_length, dtype=torch.long)
indices = torch.zeros(tokens_length, dtype=torch.long)
tokens = tokens.input_ids.numpy()[0]
tokens_edit = tokens_edit.input_ids.numpy()[0]
for name, a0, a1, b0, b1 in SequenceMatcher(None, tokens, tokens_edit).get_opcodes():
if b0 < tokens_length:
if name == "equal" or (name == "replace" and a1-a0 == b1-b0):
mask[b0:b1] = 1
indices[b0:b1] = indices_target[a0:a1]
for name, module in unet.named_modules():
module_name = type(module).__name__
if module_name == "CrossAttention" and "attn2" in name:
module.last_attn_slice_mask = mask.to(device)
module.last_attn_slice_indices = indices.to(device)
if module_name == "CrossAttention" and "attn1" in name:
module.last_attn_slice_mask = None
module.last_attn_slice_indices = None
def init_attention_func():
def new_attention(self, query, key, value, sequence_length, dim):
batch_size_attention = query.shape[0]
hidden_states = torch.zeros(
(batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype
)
slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0]
for i in range(hidden_states.shape[0] // slice_size):
start_idx = i * slice_size
end_idx = (i + 1) * slice_size
attn_slice = (
torch.einsum("b i d, b j d -> b i j", query[start_idx:end_idx], key[start_idx:end_idx]) * self.scale
)
attn_slice = attn_slice.softmax(dim=-1)
if self.use_last_attn_slice:
if self.last_attn_slice_mask is not None:
new_attn_slice = torch.index_select(self.last_attn_slice, -1, self.last_attn_slice_indices)
attn_slice = attn_slice * (1 - self.last_attn_slice_mask) + new_attn_slice * self.last_attn_slice_mask
else:
attn_slice = self.last_attn_slice
self.use_last_attn_slice = False
if self.save_last_attn_slice:
self.last_attn_slice = attn_slice
self.save_last_attn_slice = False
if self.use_last_attn_weights and self.last_attn_slice_weights is not None:
attn_slice = attn_slice * self.last_attn_slice_weights
self.use_last_attn_weights = False
attn_slice = torch.einsum("b i j, b j d -> b i d", attn_slice, value[start_idx:end_idx])
hidden_states[start_idx:end_idx] = attn_slice
# reshape hidden_states
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
return hidden_states
for name, module in unet.named_modules():
module_name = type(module).__name__
if module_name == "CrossAttention":
module.last_attn_slice = None
module.use_last_attn_slice = False
module.use_last_attn_weights = False
module.save_last_attn_slice = False
module._attention = new_attention.__get__(module, type(module))
def use_last_tokens_attention(use=True):
for name, module in unet.named_modules():
module_name = type(module).__name__
if module_name == "CrossAttention" and "attn2" in name:
module.use_last_attn_slice = use
def use_last_tokens_attention_weights(use=True):
for name, module in unet.named_modules():
module_name = type(module).__name__
if module_name == "CrossAttention" and "attn2" in name:
module.use_last_attn_weights = use
def use_last_self_attention(use=True):
for name, module in unet.named_modules():
module_name = type(module).__name__
if module_name == "CrossAttention" and "attn1" in name:
module.use_last_attn_slice = use
def save_last_tokens_attention(save=True):
for name, module in unet.named_modules():
module_name = type(module).__name__
if module_name == "CrossAttention" and "attn2" in name:
module.save_last_attn_slice = save
def save_last_self_attention(save=True):
for name, module in unet.named_modules():
module_name = type(module).__name__
if module_name == "CrossAttention" and "attn1" in name:
module.save_last_attn_slice = save
####################################
##### BASELINE ALGORITHM, ONLY USED NOW FOR SDEDIT ####3
@torch.no_grad()
def baseline_stablediffusion(prompt="",
prompt_edit=None,
null_prompt='',
prompt_edit_token_weights=[],
prompt_edit_tokens_start=0.0,
prompt_edit_tokens_end=1.0,
prompt_edit_spatial_start=0.0,
prompt_edit_spatial_end=1.0,
clip_start=0.0,
clip_end=1.0,
guidance_scale=7,
steps=50,
seed=1,
width=512, height=512,
init_image=None, init_image_strength=0.5,
fixed_starting_latent = None,
prev_image= None,
grid=None,
clip_guidance=None,
clip_guidance_scale=1,
num_cutouts=4,
cut_power=1,
scheduler_str='lms',
return_latent=False,
one_pass=False,
normalize_noise_pred=False):
width = width - width % 64
height = height - height % 64
#If seed is None, randomly select seed from 0 to 2^32-1
if seed is None: seed = random.randrange(2**32 - 1)
generator = torch.cuda.manual_seed(seed)
#Set inference timesteps to scheduler
scheduler_dict = {'ddim':DDIMScheduler,
'lms':LMSDiscreteScheduler,
'pndm':PNDMScheduler,
'ddpm':DDPMScheduler}
scheduler_call = scheduler_dict[scheduler_str]
if scheduler_str == 'ddim':
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False, set_alpha_to_one=False)
else:
scheduler = scheduler_call(beta_schedule="scaled_linear",
num_train_timesteps=1000)
scheduler.set_timesteps(steps)
if prev_image is not None:
prev_scheduler = LMSDiscreteScheduler(beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000)
prev_scheduler.set_timesteps(steps)
#Preprocess image if it exists (img2img)
if init_image is not None:
init_image = init_image.resize((width, height), resample=Image.Resampling.LANCZOS)
init_image = np.array(init_image).astype(np_dtype) / 255.0 * 2.0 - 1.0
init_image = torch.from_numpy(init_image[np.newaxis, ...].transpose(0, 3, 1, 2))
#If there is alpha channel, composite alpha for white, as the diffusion model does not support alpha channel
if init_image.shape[1] > 3:
init_image = init_image[:, :3] * init_image[:, 3:] + (1 - init_image[:, 3:])
#Move image to GPU
init_image = init_image.to(device)
#Encode image
with autocast(device):
init_latent = vae.encode(init_image).latent_dist.sample(generator=generator) * 0.18215
t_start = steps - int(steps * init_image_strength)
else:
init_latent = torch.zeros((1, unet.in_channels, height // 8, width // 8), device=device)
t_start = 0
#Generate random normal noise
if fixed_starting_latent is None:
noise = torch.randn(init_latent.shape, generator=generator, device=device, dtype=unet.dtype)
if scheduler_str == 'ddim':
if init_image is not None:
raise notImplementedError
latent = scheduler.add_noise(init_latent, noise,
1000 - int(1000 * init_image_strength)).to(device)
else:
latent = noise
else:
latent = scheduler.add_noise(init_latent, noise,
t_start).to(device)
else:
latent = fixed_starting_latent
t_start = steps - int(steps * init_image_strength)
if prev_image is not None:
#Resize and prev_image for numpy b h w c -> torch b c h w
prev_image = prev_image.resize((width, height), resample=Image.Resampling.LANCZOS)
prev_image = np.array(prev_image).astype(np_dtype) / 255.0 * 2.0 - 1.0
prev_image = torch.from_numpy(prev_image[np.newaxis, ...].transpose(0, 3, 1, 2))
#If there is alpha channel, composite alpha for white, as the diffusion model does not support alpha channel
if prev_image.shape[1] > 3:
prev_image = prev_image[:, :3] * prev_image[:, 3:] + (1 - prev_image[:, 3:])
#Move image to GPU
prev_image = prev_image.to(device)
#Encode image
with autocast(device):
prev_init_latent = vae.encode(prev_image).latent_dist.sample(generator=generator) * 0.18215
t_start = steps - int(steps * init_image_strength)
prev_latent = prev_scheduler.add_noise(prev_init_latent, noise, t_start).to(device)
else:
prev_latent = None
#Process clip
with autocast(device):
tokens_unconditional = clip_tokenizer(null_prompt, padding="max_length", max_length=clip_tokenizer.model_max_length, truncation=True, return_tensors="pt", return_overflowing_tokens=True)
embedding_unconditional = clip(tokens_unconditional.input_ids.to(device)).last_hidden_state
tokens_conditional = clip_tokenizer(prompt, padding="max_length", max_length=clip_tokenizer.model_max_length, truncation=True, return_tensors="pt", return_overflowing_tokens=True)
embedding_conditional = clip(tokens_conditional.input_ids.to(device)).last_hidden_state
#Process prompt editing
assert not ((prompt_edit is not None) and (prev_image is not None))
if prompt_edit is not None:
tokens_conditional_edit = clip_tokenizer(prompt_edit, padding="max_length", max_length=clip_tokenizer.model_max_length, truncation=True, return_tensors="pt", return_overflowing_tokens=True)
embedding_conditional_edit = clip(tokens_conditional_edit.input_ids.to(device)).last_hidden_state
init_attention_edit(tokens_conditional, tokens_conditional_edit)
elif prev_image is not None:
init_attention_edit(tokens_conditional, tokens_conditional)
init_attention_func()
init_attention_weights(prompt_edit_token_weights)
timesteps = scheduler.timesteps[t_start:]
# print(timesteps)
assert isinstance(guidance_scale, int)
num_cycles = 1 # guidance_scale + 1
last_noise_preds = None
for i, t in tqdm(enumerate(timesteps), total=len(timesteps)):
t_index = t_start + i
latent_model_input = latent
if scheduler_str=='lms':
sigma = scheduler.sigmas[t_index] # last is first and first is last
latent_model_input = (latent_model_input / ((sigma**2 + 1) ** 0.5)).to(unet.dtype)
else:
assert scheduler_str in ['ddim', 'pndm', 'ddpm']
#Predict the unconditional noise residual
if len(t.shape) == 0:
t = t[None].to(unet.device)
noise_pred_uncond = unet(latent_model_input, t, encoder_hidden_states=embedding_unconditional,
).sample
if prev_latent is not None:
prev_latent_model_input = prev_latent
prev_latent_model_input = (prev_latent_model_input / ((sigma**2 + 1) ** 0.5)).to(unet.dtype)
prev_noise_pred_uncond = unet(prev_latent_model_input, t,
encoder_hidden_states=embedding_unconditional,
).sample
# noise_pred_uncond = unet(latent_model_input, t,
# encoder_hidden_states=embedding_unconditional)['sample']
#Prepare the Cross-Attention layers
if prompt_edit is not None or prev_latent is not None:
save_last_tokens_attention()
save_last_self_attention()
else:
#Use weights on non-edited prompt when edit is None
use_last_tokens_attention_weights()
#Predict the conditional noise residual and save the cross-attention layer activations
if prev_latent is not None:
raise NotImplementedError # I totally lost track of what this is
prev_noise_pred_cond = unet(prev_latent_model_input, t, encoder_hidden_states=embedding_conditional,
).sample
else:
noise_pred_cond = unet(latent_model_input, t, encoder_hidden_states=embedding_conditional,
).sample
#Edit the Cross-Attention layer activations
t_scale = t / scheduler.num_train_timesteps
if prompt_edit is not None or prev_latent is not None:
if t_scale >= prompt_edit_tokens_start and t_scale <= prompt_edit_tokens_end:
use_last_tokens_attention()
if t_scale >= prompt_edit_spatial_start and t_scale <= prompt_edit_spatial_end:
use_last_self_attention()
#Use weights on edited prompt
use_last_tokens_attention_weights()
#Predict the edited conditional noise residual using the cross-attention masks
if prompt_edit is not None:
noise_pred_cond = unet(latent_model_input, t,
encoder_hidden_states=embedding_conditional_edit).sample
#Perform guidance
# if i%(num_cycles)==0: # cycle_i+1==num_cycles:
"""
if cycle_i+1==num_cycles:
noise_pred = noise_pred_uncond
else:
noise_pred = noise_pred_cond - noise_pred_uncond
"""
if last_noise_preds is not None:
# print( (last_noise_preds[0]*noise_pred_uncond).sum(), (last_noise_preds[1]*noise_pred_cond).sum())
# print(F.cosine_similarity(last_noise_preds[0].flatten(), noise_pred_uncond.flatten(), dim=0),
# F.cosine_similarity(last_noise_preds[1].flatten(), noise_pred_cond.flatten(), dim=0))
last_grad= last_noise_preds[1] - last_noise_preds[0]
new_grad = noise_pred_cond - noise_pred_uncond
# print( F.cosine_similarity(last_grad.flatten(), new_grad.flatten(), dim=0))
last_noise_preds = (noise_pred_uncond, noise_pred_cond)
use_cond_guidance = True
if use_cond_guidance:
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
else:
noise_pred = noise_pred_uncond
if clip_guidance is not None and t_scale >= clip_start and t_scale <= clip_end:
noise_pred, latent = new_cond_fn(latent, t, t_index,
embedding_conditional, noise_pred,clip_guidance,
clip_guidance_scale,
num_cutouts,
scheduler, unet,use_cutouts=True,
cut_power=cut_power)
if normalize_noise_pred:
noise_pred = noise_pred * noise_pred_uncond.norm() / noise_pred.norm()
if scheduler_str == 'ddim':
latent = forward_step(scheduler, noise_pred,
t,
latent).prev_sample
else:
latent = scheduler.step(noise_pred,
t_index,
latent).prev_sample
if prev_latent is not None:
prev_noise_pred = prev_noise_pred_uncond + guidance_scale * (prev_noise_pred_cond - prev_noise_pred_uncond)
prev_latent = prev_scheduler.step(prev_noise_pred, t_index, prev_latent).prev_sample
if one_pass: break
#scale and decode the image latents with vae
if return_latent: return latent
latent = latent / 0.18215
image = vae.decode(latent.to(vae.dtype)).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
image = (image[0] * 255).round().astype("uint8")
return Image.fromarray(image)
####################################
#### HELPER FUNCTIONS FOR OUR METHOD #####
def get_alpha_and_beta(t, scheduler):
# want to run this for both current and previous timnestep
if t.dtype==torch.long:
alpha = scheduler.alphas_cumprod[t]
return alpha, 1-alpha
if t<0:
return scheduler.final_alpha_cumprod, 1 - scheduler.final_alpha_cumprod
low = t.floor().long()
high = t.ceil().long()
rem = t - low
low_alpha = scheduler.alphas_cumprod[low]
high_alpha = scheduler.alphas_cumprod[high]
interpolated_alpha = low_alpha * rem + high_alpha * (1-rem)
interpolated_beta = 1 - interpolated_alpha
return interpolated_alpha, interpolated_beta
# A DDIM forward step function
def forward_step(
self,
model_output,
timestep: int,
sample,
eta: float = 0.0,
use_clipped_model_output: bool = False,
generator=None,
return_dict: bool = True,
use_double=False,
) :
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
prev_timestep = timestep - self.config.num_train_timesteps / self.num_inference_steps
if timestep > self.timesteps.max():
raise NotImplementedError("Need to double check what the overflow is")
alpha_prod_t, beta_prod_t = get_alpha_and_beta(timestep, self)
alpha_prod_t_prev, _ = get_alpha_and_beta(prev_timestep, self)
alpha_quotient = ((alpha_prod_t / alpha_prod_t_prev)**0.5)
first_term = (1./alpha_quotient) * sample
second_term = (1./alpha_quotient) * (beta_prod_t ** 0.5) * model_output
third_term = ((1 - alpha_prod_t_prev)**0.5) * model_output
return first_term - second_term + third_term
# A DDIM reverse step function, the inverse of above
def reverse_step(
self,
model_output,
timestep: int,
sample,
eta: float = 0.0,
use_clipped_model_output: bool = False,
generator=None,
return_dict: bool = True,
use_double=False,
) :
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
prev_timestep = timestep - self.config.num_train_timesteps / self.num_inference_steps
if timestep > self.timesteps.max():
raise NotImplementedError
else:
alpha_prod_t = self.alphas_cumprod[timestep]
alpha_prod_t, beta_prod_t = get_alpha_and_beta(timestep, self)
alpha_prod_t_prev, _ = get_alpha_and_beta(prev_timestep, self)
alpha_quotient = ((alpha_prod_t / alpha_prod_t_prev)**0.5)
first_term = alpha_quotient * sample
second_term = ((beta_prod_t)**0.5) * model_output
third_term = alpha_quotient * ((1 - alpha_prod_t_prev)**0.5) * model_output
return first_term + second_term - third_term
@torch.no_grad()
def latent_to_image(latent):
image = vae.decode(latent.to(vae.dtype)/0.18215).sample
image = prep_image_for_return(image)
return image
def prep_image_for_return(image):
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
image = (image[0] * 255).round().astype("uint8")
image = Image.fromarray(image)
return image
#############################
##### MAIN EDICT FUNCTION #######
# Use EDICT_editing to perform calls
@torch.no_grad()
def coupled_stablediffusion(prompt="",
prompt_edit=None,
null_prompt='',
prompt_edit_token_weights=[],
prompt_edit_tokens_start=0.0,
prompt_edit_tokens_end=1.0,
prompt_edit_spatial_start=0.0,
prompt_edit_spatial_end=1.0,
guidance_scale=7.0, steps=50,
seed=1, width=512, height=512,
init_image=None, init_image_strength=1.0,
run_baseline=False,
use_lms=False,
leapfrog_steps=True,
reverse=False,
return_latents=False,
fixed_starting_latent=None,
beta_schedule='scaled_linear',
mix_weight=0.93):
#If seed is None, randomly select seed from 0 to 2^32-1
if seed is None: seed = random.randrange(2**32 - 1)
generator = torch.cuda.manual_seed(seed)
def image_to_latent(im):
if isinstance(im, torch.Tensor):
# assume it's the latent
# used to avoid clipping new generation before inversion
init_latent = im.to(device)
else:
#Resize and transpose for numpy b h w c -> torch b c h w
im = im.resize((width, height), resample=Image.Resampling.LANCZOS)
im = np.array(im).astype(np_dtype) / 255.0 * 2.0 - 1.0
# check if black and white
if len(im.shape) < 3:
im = np.stack([im for _ in range(3)], axis=2) # putting at end b/c channels
im = torch.from_numpy(im[np.newaxis, ...].transpose(0, 3, 1, 2))
#If there is alpha channel, composite alpha for white, as the diffusion model does not support alpha channel
if im.shape[1] > 3:
im = im[:, :3] * im[:, 3:] + (1 - im[:, 3:])
#Move image to GPU
im = im.to(device)
#Encode image
if use_half_prec:
init_latent = vae.encode(im).latent_dist.sample(generator=generator) * 0.18215
else:
with autocast(device):
init_latent = vae.encode(im).latent_dist.sample(generator=generator) * 0.18215
return init_latent
assert not use_lms, "Can't invert LMS the same as DDIM"
if run_baseline: leapfrog_steps=False
#Change size to multiple of 64 to prevent size mismatches inside model
width = width - width % 64
height = height - height % 64
#Preprocess image if it exists (img2img)
if init_image is not None:
assert reverse # want to be performing deterministic noising
# can take either pair (output of generative process) or single image
if isinstance(init_image, list):
if isinstance(init_image[0], torch.Tensor):
init_latent = [t.clone() for t in init_image]
else:
init_latent = [image_to_latent(im) for im in init_image]
else:
init_latent = image_to_latent(init_image)
# this is t_start for forward, t_end for reverse
t_limit = steps - int(steps * init_image_strength)
else:
assert not reverse, 'Need image to reverse from'
init_latent = torch.zeros((1, unet.in_channels, height // 8, width // 8), device=device)
t_limit = 0
if reverse:
latent = init_latent
else:
#Generate random normal noise
noise = torch.randn(init_latent.shape,
generator=generator,
device=device,
dtype=torch_dtype)
if fixed_starting_latent is None:
latent = noise
else:
if isinstance(fixed_starting_latent, list):
latent = [l.clone() for l in fixed_starting_latent]
else:
latent = fixed_starting_latent.clone()
t_limit = steps - int(steps * init_image_strength)
if isinstance(latent, list): # initializing from pair of images
latent_pair = latent
else: # initializing from noise
latent_pair = [latent.clone(), latent.clone()]
if steps==0:
if init_image is not None:
return image_to_latent(init_image)
else:
image = vae.decode(latent.to(vae.dtype) / 0.18215).sample
return prep_image_for_return(image)
#Set inference timesteps to scheduler
schedulers = []
for i in range(2):
# num_raw_timesteps = max(1000, steps)
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012,
beta_schedule=beta_schedule,
num_train_timesteps=1000,
clip_sample=False,
set_alpha_to_one=False)
scheduler.set_timesteps(steps)
schedulers.append(scheduler)
with autocast(device):
# CLIP Text Embeddings
tokens_unconditional = clip_tokenizer(null_prompt, padding="max_length",
max_length=clip_tokenizer.model_max_length,
truncation=True, return_tensors="pt",
return_overflowing_tokens=True)
embedding_unconditional = clip(tokens_unconditional.input_ids.to(device)).last_hidden_state
tokens_conditional = clip_tokenizer(prompt, padding="max_length",
max_length=clip_tokenizer.model_max_length,
truncation=True, return_tensors="pt",
return_overflowing_tokens=True)
embedding_conditional = clip(tokens_conditional.input_ids.to(device)).last_hidden_state
#Process prompt editing (if running Prompt-to-Prompt)
if prompt_edit is not None:
tokens_conditional_edit = clip_tokenizer(prompt_edit, padding="max_length",
max_length=clip_tokenizer.model_max_length,
truncation=True, return_tensors="pt",
return_overflowing_tokens=True)
embedding_conditional_edit = clip(tokens_conditional_edit.input_ids.to(device)).last_hidden_state
init_attention_edit(tokens_conditional, tokens_conditional_edit)
init_attention_func()
init_attention_weights(prompt_edit_token_weights)
timesteps = schedulers[0].timesteps[t_limit:]
if reverse: timesteps = timesteps.flip(0)
for i, t in tqdm(enumerate(timesteps), total=len(timesteps)):
t_scale = t / schedulers[0].num_train_timesteps
if (reverse) and (not run_baseline):
# Reverse mixing layer
new_latents = [l.clone() for l in latent_pair]
new_latents[1] = (new_latents[1].clone() - (1-mix_weight)*new_latents[0].clone()) / mix_weight
new_latents[0] = (new_latents[0].clone() - (1-mix_weight)*new_latents[1].clone()) / mix_weight
latent_pair = new_latents
# alternate EDICT steps
for latent_i in range(2):
if run_baseline and latent_i==1: continue # just have one sequence for baseline
# this modifies latent_pair[i] while using
# latent_pair[(i+1)%2]
if reverse and (not run_baseline):
if leapfrog_steps:
# what i would be from going other way
orig_i = len(timesteps) - (i+1)
offset = (orig_i+1) % 2
latent_i = (latent_i + offset) % 2
else:
# Do 1 then 0
latent_i = (latent_i+1)%2
else:
if leapfrog_steps:
offset = i%2
latent_i = (latent_i + offset) % 2
latent_j = ((latent_i+1) % 2) if not run_baseline else latent_i
latent_model_input = latent_pair[latent_j]
latent_base = latent_pair[latent_i]
#Predict the unconditional noise residual
noise_pred_uncond = unet(latent_model_input, t,
encoder_hidden_states=embedding_unconditional).sample
#Prepare the Cross-Attention layers
if prompt_edit is not None:
save_last_tokens_attention()
save_last_self_attention()
else:
#Use weights on non-edited prompt when edit is None
use_last_tokens_attention_weights()
#Predict the conditional noise residual and save the cross-attention layer activations
noise_pred_cond = unet(latent_model_input, t,
encoder_hidden_states=embedding_conditional).sample
#Edit the Cross-Attention layer activations
if prompt_edit is not None:
t_scale = t / schedulers[0].num_train_timesteps
if t_scale >= prompt_edit_tokens_start and t_scale <= prompt_edit_tokens_end:
use_last_tokens_attention()
if t_scale >= prompt_edit_spatial_start and t_scale <= prompt_edit_spatial_end:
use_last_self_attention()
#Use weights on edited prompt
use_last_tokens_attention_weights()
#Predict the edited conditional noise residual using the cross-attention masks
noise_pred_cond = unet(latent_model_input,
t,
encoder_hidden_states=embedding_conditional_edit).sample
#Perform guidance
grad = (noise_pred_cond - noise_pred_uncond)
noise_pred = noise_pred_uncond + guidance_scale * grad
step_call = reverse_step if reverse else forward_step
new_latent = step_call(schedulers[latent_i],
noise_pred,
t,
latent_base)# .prev_sample
new_latent = new_latent.to(latent_base.dtype)
latent_pair[latent_i] = new_latent
if (not reverse) and (not run_baseline):
# Mixing layer (contraction) during generative process
new_latents = [l.clone() for l in latent_pair]
new_latents[0] = (mix_weight*new_latents[0] + (1-mix_weight)*new_latents[1]).clone()
new_latents[1] = ((1-mix_weight)*new_latents[0] + (mix_weight)*new_latents[1]).clone()
latent_pair = new_latents
#scale and decode the image latents with vae, can return latents instead of images
if reverse or return_latents:
results = [latent_pair]
return results if len(results)>1 else results[0]
# decode latents to iamges
images = []
for latent_i in range(2):
latent = latent_pair[latent_i] / 0.18215
image = vae.decode(latent.to(vae.dtype)).sample
images.append(image)
# Return images
return_arr = []
for image in images:
image = prep_image_for_return(image)
return_arr.append(image)
results = [return_arr]
return results if len(results)>1 else results[0]